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Abstract. A clustered graph C' = (G, T') consists of an undirected graph
G and a rooted tree T in which the leaves of T' correspond to the ver-
tices of G = (V, E). Each vertex p in T corresponds to a subset of the
vertices of the graph called “cluster”. c-planarity is a natural extension
of graph planarity for clustered graphs, and plays an important role in
automatic graph drawing. The complexity status of c-planarity testing
is unknown. It has been shown in [FCE95Dah98| that c-planarity can
be tested in linear time for c-connected graphs, i.e., graphs in which the
cluster induced subgraphs are connected.

In this paper, we provide a polynomial time algorithm for c-planarity
testing of “almost” c-connected clustered graphs, i.e., graphs for which
all nodes corresponding to the non-c-connected clusters lie on the same
path in T starting at the root of T', or graphs in which for each non-
connected cluster its super-cluster and all its siblings in T" are connected.
The algorithm is based on the concepts for the subgraph induced planar
connectivity augmentation problem presented in [GJLY02|. We regard it
as a first step towards general c-planarity testing.

1 Introduction

A clustered graph consists of a graph G and a recursive partitioning of the ver-
tices of G. Each partition is a cluster of a subset of the vertices of G. Clustered
graphs are getting increasing attention in graph drawing [RDMO2/EENOOJFCEIS),
[Dah98]. Formally, a clustered graph C' = (G,T) is defined as an undirected
graph G and a rooted tree T' in which the leaves of T correspond to the vertices
of G=(V,E).
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In a cluster drawing of a clustered graph, vertices and edges are drawn as
usual, and clusters are drawn as simple closed curves defining closed regions of
the plane. The region of each cluster C' contains the vertices W corresponding
to C and the edges of the graph induced by W. The borders of the regions for
the clusters are pairwise disjoint. If a cluster drawing does not contain crossings
between edge pairs or edge/region pairs, we call it a ¢-planar drawing. Graphs
that admit such a drawing are called c-planar.

While the complexity status of c-planarity testing is unknown, the problem
can be solved in linear time if the graph is c-connected, i.e., all cluster induced
subgraphs are connected [Dah98[FCE95]. In approaching the general case, it
appears natural to augment the clustered graph by additional edges in order to
achieve c-connectivity without loosing c-planarity.

The results presented in this paper are the basis for a first step towards
this goal. Namely, we present a polynomial time algorithm that tests c-planarity
for “almost” c-connected clustered graphs, i.e., graphs for which all c-vertices
corresponding to the non-connected clusters lie on the same path in T starting at
the root of T, or graphs in which for each non-connected cluster its super-cluster
and all its siblings are connected.

The algorithm uses ideas from the linear time algorithm for subgraph in-
duced planar connectivity augmentation presented in [GJLT02]. For an undi-
rected graph G = (V, E), W C V, and Ew = {(v1,v2) € E : {v1,v2} C W} let
Gw = (W, Ew) be the subgraph of G induced by W. If G is planar, a subgraph
induced planar connectivity augmentation for W is a set F' of additional edges
with end vertices in W such that the graph G’ = (V, E U F) is planar and the
graph GY; is connected.

The paper is organized as follows: After an introduction into the SPQR data
structure and clustered graphs in Sect. [2, we describe in Sect. [B] a linear time
algorithm for c-planarity testing of a clustered graph with exactly one cluster in
addition to the root cluster. This algorithm can be extended to a quadratic time
algorithm for c-planarity testing in clustered graphs with one level beyond the
root level in which at most one cluster is non-connected (see Sect.[]). In Sect. [
we present a technique to extend the previous results to graphs with arbitrarily
many non-connected clusters with the restriction that for each non-connected
cluster, all its siblings and its super-cluster are connected. The same technique
can be applied for graphs in which all the non-connected clusters lie on the same
path in T

2 Preliminaries

2.1 SPQR-Trees

The data structure we use is called SPQR-tree and has been introduced by
Di Battista and Tamassia [BT96]. It represents a decomposition of a planar
biconnected graph according to its split pairs (pairs of vertices whose removal
splits the graph or vertices connected by an edge). The construction of the
SPQR-tree works recursively. At every node p of the tree, we split the graph
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into the split components of the split pair associated with that node. The first
split pair of the decomposition is an edge of the graph and is called the reference
edge of the SPQR-tree. We add an edge to every split pair to make sure that
they are biconnected and continue by computing the SPQR-tree for every split
pair and making the resulting trees the subtrees of the node used for splitting.
Every node of the SPQR-tree has two associated graphs:

— The skeleton of the node associated with a split pair p is a simplified version
of the whole graph where some split-components are replaced by single edges.

— The pertinent graph of a node v is the subgraph of the original graph that
is represented by the subtree rooted at v.

The two vertices of the split pair that are associated with a node p are called
the poles of . There are four different node types in an SPQR-tree (S-,P-,Q-
and R-nodes) that differ in the number and structure of the split components of
the split pair associated with the node. The @-nodes are the leaves of the tree,
and there is one @-node for every edge in the graph. The skeleton of a @-node
consists of the poles connected by two edges. The skeletons of S-nodes are cy-
cles, while the skeletons of R-nodes are triconnected graphs. P-node skeletons
consist of the poles connected by at least three edges. Fig. 1 shows examples for
skeletons of S-, P- and R-nodes. Skeletons of adjacent nodes in the SPQR-tree
share a pair of vertices. In each of the two skeletons, one edge connecting the two
vertices is associated with a corresponding edge in the other skeleton. These two
edges are called twin edges. The edge in a skeleton that has a twin edge in the
parent node is called the virtual edge of the skeleton. Each edge e in a skeleton
represents a subgraph of the original graph. This graph together with e is the
expansion graph of e. All leaves of the SPQR-tree are ()-nodes and all inner
nodes S-, P- or R-nodes. When we see the SPQR-tree as an unrooted tree, then
it is unique for every biconnected planar graph. Another important property of
these trees is that their size (including the skeletons) is linear in the size of the
original graph and that they can be constructed in linear time [BT96/GMO1].
As described in [BT96/GMO01], SPQR-trees can be used to represent the set of
all combinatorial embeddings of a biconnected planar graph. Every combinato-
rial embedding of the original graph defines a unique combinatorial embedding
for each skeleton of a node in the SPQR-tree. Conversely, when we define an
embedding for each skeleton of a node in the SPQR-tree, we define a unique
embedding for the original graph. The skeleton of S- and @-nodes are simple
cycles, so they have only one embedding. But the skeletons of R-and P-nodes
have at least two different embeddings. Therefore, the embeddings of the R-
and P-nodes determine the embedding of the graph and we call these nodes the
decision nodes of the SPQR-tree. The BC-tree of a connected graph has two
types of nodes: The c-nodes correspond to cut-vertices of G and the b-nodes to
biconnected components (blocks). There is an edge connecting a c-node and a
b-node, if the cut-vertex is contained in the block.
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Fig. 1. The structure of biconnected graphs and the skeleton of the root of the corre-
sponding SPQR-tree
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Fig. 2. A graph G and its SPQR-tree (the @Q-nodes of the R- and S-node are omitted)

2.2 Clustered Graphs

The following definitions are based on the work of Cohen, Eades and Feng
[FCE95]. A clustered graph C = (G,T) consists of an undirected graph G and a
rooted tree T where the leaves of T are the vertices of G. Each node v of T' rep-
resents a cluster V(v) of the vertices of G that are leaves of the subtree rooted
at v. Therefore, the tree T' describes an inclusion relation between clusters. T is
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called the inclusion tree of C, and G is the underlying graph of C. The root of
T is called root cluster. We let T'(v) denote the subtree of T rooted at node v
and G(v) denote the subgraph of G induced by the cluster associated with node
v. We define C(v) = (G(v), T(v)) to be the sub-clustered graph associated with
node v. We define pa(v) the parent cluster of v in T" and chl(v) the set of child
clusters of v in T'. A drawing of a clustered graph C' = (G, T) is a representation
of the clustered graph in the plane. Each vertex of G is represented by a point.
Each edge of G is represented by a simple curve between the drawings of its
endpoints. For each node v of T, the cluster V(v) is drawn as a simple closed
region R that contains the drawing of G(v), such that:

— the regions for all sub-clusters of R are completely in the interior of R;

— the regions for all other clusters are completely contained in the exterior of
R;

— if there is an edge e between two vertices of V(v) then the drawing of e is
completely contained in R.

We say that there is an edge-region crossing in the drawing if the drawing of edge
e crosses the drawing of region R more than once. A drawing of a clustered graph
is c-planar if there are no edge crossings or edge-region crossings. If a clustered
graph C has a c-planar drawing then we say that it is c-planar (see Figure[3).
Therefore, a c-planar drawing contains a planar drawing of the underlying graph.

Fig. 3. A planar clustered graph that is not c-planar [FCEY5] (the three disjoint clusters
are represented by different types of vertices)

An edge is said to be incident to a cluster V(v) if one end of the edge is a vertex
of the cluster but the other endpoint is not in V(v). An embedding of C includes
an embedding of G plus the circular ordering of edges crossing the boundary of
the region of each non-trivial cluster (a cluster which is not a single vertex). A
clustered graph C = (G, T) is connected if G is connected. A clustered graph
C = (G,T) is c-connected if each cluster induces a connected subgraph of G.
Suppose that C; = (G1,T) and Cy = (G, Ts) are two clustered graphs such
that T is a subtree of T, and for each node v of Ty, G1(v) is a subgraph of
G2(v). Then we say C1 is a sub-clustered graph of Co, and Cy is a super-clustered
graph of Cy. The following results from [FCE9H] characterize c-planarity:
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Theorem 1. [FCEY5] A c-connected clustered graph C = (G,T) is c-planar if
and only if graph G is planar and there exists a planar drawing D of G, such
that for each node v of T', all the vertices and edges of G —G(v) are in the outer
face of the drawing of G(v).

Theorem 2. [FCEJ5] A clustered graph C = (G,T) is c-planar if and only if
it s a sub-clustered graph of a connected and c-planar clustered graph.

A further result from [FCEJ5] is a c-planarity testing algorithm for c-connected
clustered graphs based on Theorem [Jwith running time O(n?), where n is the
number of vertices of the underlying graph and each non-trivial cluster has at
least two children. An improvement in time complexity is given by Dahlhaus
who constructed a linear time algorithm [Dah98].

3 Clustered Graphs with Two Clusters

Let C = (G, T) be a clustered graph with a root cluster and a cluster v. Let the
graph G be connected and the subgraph induced by the vertices of the cluster v
non-connected. The problem of connecting the subgraph induced by one cluster
is similar to the problem of planar connectivity augmentation of an induced
subgraph [GJLT02].

In the following, we name the vertices of G(v) blue vertices. After constructing
an SPQR-tree 7 for every biconnected component of G we mark for every SPQR-
tree each edge in every skeleton either blue or black. An edge of a skeleton is
marked blue, if its expansion graph contains blue vertices. Otherwise it is marked
black.

Additionally, we assign an attribute called permeable to certain blue edges.
Intuitively, an edge is permeable if it is possible to construct a path connecting
only blue vertices through its expansion graph. Let G(e) be the expansion graph
of edge e in skeleton S. Since G(e) is biconnected we have that in any planar
embedding G(e) there are exactly two faces that have e on their boundary. The
edge e in S is permeable with respect to W, if there is an embedding IT of G(e)
and a list of at least two faces L = (f1,..., fx) in IT that satisfies the following
properties:

1. The two faces fi; and fj are the two faces with e on their boundary.
2. For any two faces f;, fi+1 with 1 < i < k, there is a blue vertex on the
boundary between f; and f;41.

We call a skeleton S of a node g of 7 permeable if the pertinent graph of
p and the virtual edge of S have the two properties stated above. Thus S is
permeable if the twin edge of its virtual edge is permeable.

Theorem 3. Let C = (G,T) be a clustered graph such that the following con-
ditions hold:

— G is series-parallel
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— C contains only one non-trivial non-root cluster v and W is its corresponding
vertex set.

Let T be set of the SPQR-trees of every biconnected component of G. Let C :=
{V € 2|V is a circle in the expansion graph of a P-node and contains both
pole vertices} be the set of the vertex sets of all circles in the expansion graphs
of P-nodes that contain both pole vertices. Let the subgraph Gy induced by W
i G allow a planar connectivity augmentation for W. If for every P-node the
following property (%) holds, then C is c-planar:

(x) In every P-node, there is at the most one circle V of C such that
1. the union of the expansion graphs of two children @, and g2 contains V
and
2. fori € {1,2} the cut of G — Gw with the expansion graph of child p; is
nonempty.

Proof. We calculate the BC-tree of G and for every block B the SPQ R-tree of
its biconnected component. The SPQ R-tree of a series-parallel graph does not
contain R-nodes.

Hence Gw has a planar connectivity augmentation, we assume that Gy is
connected. As we introduce a minimum cardinality edge set applying the planar
connectivity augmentation, we do not loose c-planarity. According to Theorem [I]
we need to show that a planar embedding exists such that the subgraph G — Gy,
is embedded into the outside of Gy . It follows that we need to show that G—Gw
is not embedded partially inside of Gy (if it is embedded completely in an inner
face we choose a face f that has an edge e = (v,w) with v € W and w ¢ W
as outer face). Consider now the P-, S- and @Q-nodes. For P-nodes we have the
following cases

— the P-node is black, that is it contains only black edges,

— the P-node is blue and there exists exactly one blue edge in a P-node. The
expansion graph of this blue edge contains the subgraph Gy, or

— the P-node is blue and permeable.

A blue P-node that is not permeable such that case 2 does not hold cannot exist
for the following reasoning. If there is at least one blue edge in the P-node and
another blue vertex or blue edge in another node, at least one pole vertex has
to be blue due to the connectivity of Gy . If there are at least two blue edges in
the P-node, the pole vertex must be blue.

Similar reasoning holds for S- and @-nodes of the SPQR-trees and for the
cut vertices of graph G. The latter are blue if at least two blocks which they
belong to are blue.

We have to show that there does not exist a planar embedding such that the
subgraph G — Gy is embedded in the outside of Gy if and only if there exists
a P-node P with more than one circle of vertices of W in the corresponding
expansion graph fulfilling conditions 1. and 2. Note, that G(v) is equal to Gy
and that P is in this case permeable as both pole vertices belong to G(v).
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If there exists a P-node P with more than one circle of vertices of W in the
corresponding expansion graph fulfilling conditions 1. and 2., then we order the
edges that correspond to the union of expansion graphs fulfilling conditions 1.
and 2. consecutively in P. We want to find an embedding according to Theorem []
As we have only two clusters (a root cluster and cluster v) this is equal to the fact,
that G(v) can be embedded into the outside of G — G(v). As G(v) is connected
(there exists a planar connectivity augmentation) there has to be an embedding
IT of G with a sequence of faces fi,..., fr such that there is at least one vertex
of G — G(v) in the boundary between two consecutive faces f; and f;11 and the
boundaries of all those faces contain all vertices of G — G(v). This is equal to
the fact that G — Gy has a planar connectivity augmentation for V.— W in
G as described in [GJLF02]. The faces containing vertices of G — G(v) in their
boundaries in P are contained in the sequence of faces fi,..., fx. As the pole
vertices are contained in G(v) and there exists at least two circles of vertices
of G(v) that are contained in at least three expansions graphs, the sequence of
faces fi,..., fr cannot be consecutive and therefore there cannot exist a planar
connectivity augmentation of G — Gy for V. — W in G. Therefore, we cannot
find an embedding according to Theorem [Jand therefore C is not c-planar.

If C is not c-planar, then there is an embedding IT in which the vertices of
G — G(v) cannot be embedded into the outside of G(v) according to Theorem [
As G(v) is connected (there exists a planar connectivity augmentation) there
does not exist a sequence of consecutive faces fi,..., fr which are consecutive
so that there is at least one vertex of V' — W on the boundary between two
faces and all vertices of V' — W are included in the union of the boundaries of
f1,---, fr. Therefore there exists a sequence of faces fi,..., fr in which their
boundaries contain all vertices of G — G(v) and there is a minimum number of
consecutive faces f; and f;11 so that on the boundary between f; and f; 11 is
no vertex of G — G(v). This is equal to the fact, that on the boundary between
fi and f;41 are vertices of G(v). Let F be the set of all the faces f; and f;;1.
As the S- and Q-nodes have skeletons with only one embedding and a skeleton
represents the whole corresponding biconnected component in G, we have to
consider the P-nodes. As the pole vertices are contained in G(v) and F is a
minimum cardinality face set, there has to be [ paths of vertices of G(v) from
one pole vertex to the other with [ = |—§‘ 42 and [ > 3. Combining the paths to
circles (the first and the last vertex of the paths are the pole vertices), we get
more than one circle fulfilling condition 1. and 2. O

Note, that (*) in the previous theorem can be replaced by: There exists
a planar connectivity augmentation for V — W in G, if the subgraph Gy is
connected using the planar connectivity augmentation. Figure flgives an example
for a clustered graph with underlying series-parallel graph which is not ¢-planar.

The previous theorem can be easily extended to c-connected clustered graph
C = (G, T) with series-parallel underlying graph G.

Theorem 4. Let C = (G, T) be a clustered graph where G is a connected planar
graph and W is the vertex set corresponding to the only non-trivial non-root clus-
ter in T'. We further assume that the subgraph Gw induced by W is connected.
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Fig. 4. Isolations in the expansion graph of P-nodes: The vertices with a circle around
are vertices of the connected cluster, the others belong to the root cluster

The clustered graph C is c-planar if and only if there is an embedding of G that
contains no cycle of blue vertices that separates the black vertices.

Therefore c-planarity can be destroyed in the expansion graphs of R-nodes
and in the expansion graphs of P-nodes if the clustered graph is c-connected.

Theorem 5. A connected clustered graph C = (G,T) where G is planar with
one non-connected cluster v is c-planar if and only if

1. there exists a planar connectivity augmentation of the subgraph induced by
the non-connected cluster v and

2. there is an embedding of G that contains no circle of vertices of G(v) that
separates vertices of G — G(v).

Proof. The proof follows from the previous theorems. O

Note, that item 2. in the previous theorem can be replaced by: There exists
a planar connectivity augmentation for the vertices of G — G(v) in G.

As a result, we are able to deal with c-planarity of a special subclass of
clustered graphs using planar connectivity augmentation and SPQR-trees.

According to Theorem [l we know how to test planar connectivity augmen-
tation of a subgraph of a planar graph. We now show how to test whether there
exists an embedding of G that contains no circle in G(v) that separates G—G(v).

Consider a clustered graph C' = (G, T') that has only one non-root cluster v
that is non-connected. Therefore the subgraph G(v) has more than one connected
component. As we choose a minimum cardinality planar augmenting edge set M
and take the pole vertices belonging to G(v) into account to augment C to a
c-connected clustered graph and if such an augmentation exists, c-planarity of
C is maintained if C' is ¢-planar. Therefore to test whether C is e-planar is equal
to the following:

Let C;, i =1,...,1,1 > 2 be the connected components of G(v).

I. There exists a drawing such that the drawing of G —C; can be drawn outside
of the drawing C; for all ¢t = 1,...,[] and

II. there exists a planar connectivity augmentation between all C;, ¢ € N and
therefore for G(v).
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1 —

Fig.5. A clustered graph C with a non-connected cluster. By splitting the non-
connected cluster, C' is extended to a c-connected clustered graph.

We test I. on an auxiliary modified clustered graph C of C' as follows. Cluster v is
split into I dummy clusters so that each connected component C; i =1, ..., cor-
responds to a dummy cluster. By construction C is a c-connected clustered graph
and can be tested according Feng, Eades and Cohen and according Dahlhaus for
c-planarity.

Definition 1. Let C be a clustered graph with a connected root cluster and a
non-connected cluster v. Let Cgyp be the clustered graph created by splitting v
into one dummy cluster for each connected component of the subgraph induced
by v that contain at least two vertices (see Fig. ). A connected component that
contains only one vertex is treated as a trivial cluster. We call Cgyp the c-split
clustered graph of C.

Note, that Cy,p is a c-connected clustered graph.

Theorem 6. Let C be a clustered graph with a connected root cluster and a
non-connected cluster v. Let Cgyp be its c-split clustered graph. If Csup is not
c-planar then C' is not c-planar.

Proof. If Cgyp is not c-planar, there exists an edge-crossing or a cluster-crossing
in at least one cluster p. The subgraphs induced by the dummy clusters of Cyyy
are connected components of the corresponding non-connected cluster v of C.
Thus there exists an edge-crossing or a cluster-crossing in v and C' is not c-
planar. O

Note that C' must not be c-planar if its c-split clustered graph Cyyy, is c-planar
(see Fig. 6). In the case that Cyp is c-planar and C' is not there will not exist a
planar connectivity augmentation in C for the non-connected cluster v.

Thus after a positive result after the application of the c-planarity test by
Dahlhaus we apply the planar connectivity augmentation algorithm on G and
the vertices of v as subset W (if we have pole vertices that belong to G(v),
we use them for connectivity). Together with Theorem [H we get the following
theorem.

Theorem 7. Let C = (G, T) be a connected clustered graph and v its only non-
trivial non-root cluster that is non-connected. C can be tested for c-planarity in
linear time with respect to the number of vertices of C and in the positive case
embedded in linear time.
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Input: A clustered graph C' = (G,T) that contains a connected root cluster
and a non-connected cluster v.

Result : true if and only if there is a c-planar connectivity augmentation for
v; in the positive case an embedding IT and the minimum cardinality
augmenting edge set.

Compute Csyp by splitting the non-connected cluster for each connected com-

ponent of the subgraph G(v);

Apply the linear time c-planarity test on Csyp;

if the test return false then

| return false;

Apply the subgraph induced planarity augmentation algorithm for C' and v;
if a planar connectivity augmentation exists then
Compute IT;
return true;
else
| return false;

Algorithm 1. The algorithm for clustered graphs C = (G,T) that contain a
connected root cluster and a non-connected cluster v. It computes an embedding
Il and the minimum cardinality augmenting edge set.

Next we consider the case that G is non-connected and there is only one
cluster v that is not the root cluster and is non-connected. For all connected
components of G we apply our algorithm for clustered graphs with one non-
connected cluster. Then we choose for each connected component a face as outer
face that contains at least one blue vertex v; and one non-blue vertex ve. We
connect the blue vertices in the outer face so that the edges of a minimum
cardinality augmenting edge set is inserted (as described in [GJL102]). In the
positive case a c-planar embedding with a minimum cardinality augmenting
edge set will be computed. Thus we have that the clustered graph has a c-planar
connectivity augmentation for the non-connected cluster v which leads us to the

following theorem.

Fig. 6. An example where C is not c-planar but its c-split clustered graph Cgyp is

NI TN

c-planar
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Theorem 8. Let C = (G, T) be a not necessarily connected clustered graph and
v its only non-trivial non-root cluster that is non-connected. C' can be tested for
c-planarity in linear time concerning the number of vertices of C' and in the
positive case embedded in O(n).

4 One-Level Clustered Graphs

As shown in the last section it is possible to test c-planarity of a clustered graph
with one non-connected cluster and a root cluster in O(n) time, where n is the
number of vertices of G. Next, we consider a clustered graph C = (G,T) with a
cluster tree T with only one level below the root cluster. So now we allow more
than one non-root cluster. Further let only one child cluster of the root cluster
be non-connected. We assume, that every non-trivial cluster has at least two
vertices.

We construct a c-split clustered graph Cs,p, of C as described in Sect. Bl If G
is not connected, we apply this technique to every connected component of G.

First, we test if the c-split clustered graph Cy,, of C is c-planar. We call
G moa by the c-planarity test of Feng, Fades and Cohen modified graph G. Then
we apply the planar connectivity augmentation algorithm described in [G.JLT02]
for the vertices belonging to v in G,0q. If one exists, then an embedding I and
a minimum cardinality augmenting edge set is computed and true is returned.
Otherwise, C' is not c-planar. If we get II, we can apply the techniques used in
the c-planarity embedding algorithm of Feng, Eades for the connected clusters
using I7 to obtain a c-planar embedding of C'. For the case that the root cluster is
non-connected, we apply further the planar connectivity augmentation algorithm
for the root cluster.

Theorem 9. Let C = (G,T) be a connected clustered graph with a cluster
tree T with only one level below the root cluster and v its only non-root non-
connected cluster. Let Csyp be the c-split clustered graph of C. Let Gioq be the
modified graph G obtained by the c-planarity test by Feng, Eades and Cohen of
Csub = (G, Tsup). C is c-planar if and only if Csyp is c-planar and there exists a
planar connectivity augmentation of the vertices belonging to the subgraph G(v)
m Gmod-

Proof.

— “«<” We have that Cgyp is c-planar and there exists a planar connectivity
augmentation of G(v) in Gpoq. Thus G is planar and there exists a planar
drawing of G, such that for every node p of Ty, all the vertices and edges
of G — G(u) are in the external face of the drawing of G(u). Note that this
holds for the connected clusters of C' and for the dummy clusters in Cl,; con-
structed of v. Therefore, G,,,,q4 allows only those c-planar embeddings that
respect the connected clusters of C' and takes the connected components
of G(v) into account. Hence the planar connectivity augmentation within
G'moq has introduced a minimum cardinality augmenting edge set, connect-
ing G(v) such that the boundary of its external face in any planar drawing
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of G(v) consists of a connected not simple cycle. Furthermore, the minimum
cardinality augmenting edge set connects the connected components of the
original G(v), so that there exists at the most one edge between two con-
nected components. Therefore G,,0q — G(v) is embedded in the outer face
of G(v) after planar connectivity augmentation. Hence, C' is ¢-planar.

— “=” We have that C is c-planar. Thus Cj,; is c-planar. Hence the vertices
of G(v) can be embedded so that there is a sequence of faces f1, ..., fr with
the following property: for all 1 < i < k, there is at least one vertex of W
on the boundary between f; and f;11 and the boundaries of the faces f;
(1 <4 < k) contain all vertices of W. Therefore G has a planar connectivity
augmentation in respect to the vertices of G(v).

O

Theorem 10. Let C = (G,T) be a connected clustered graph with a cluster tree
T with only one level below the root cluster and v its only non-root non-connected
cluster. C' can be tested for c-planarity in O(n?) time in respect to the number
n of vertices of C.

Proof. We can create the c-split clustered graph Cgy,p, in O(n) time where n
is the number of vertices of G. The c-planarity testing can be done in O(n?)
time and the planar connectivity augmentation of the subgraph induced by the
non-connected clustered graph in O(n) time. As a result the algorithm can be
implemented in O(n?) time where n is the number of vertices of G. ad

5 Multi-level Clustered Graphs

We extend the algorithm of the previous section to clustered graphs with more
than one level in the tree T'. Consider a clustered graph C' = (G,T) with at
least two non-connected clusters where G is connected. Then if for every non-
connected cluster v in the cluster tree T the parent cluster and all siblings of v
are connected, we show that it is possible to connect the non-connected clusters
using the planar connectivity augmentation [GJLT02].

To do so, we compute the c-split clustered graph Cy,; of C. Then, we traverse
T towards the root starting at the leaves in order to do the followings: For ev-
ery non-connected cluster v of C' that has connected siblings 1 and a connected
parent pa(v), we test whether the subgraph G(pa(v)) is planar, test whether the
edges that are incident to pa(v) can be drawn into the outside of the drawing
of G(pa(v)) (see Figure[7) and test whether there exists a planar connectivity
augmentation of the vertices of v. If a planar connectivity augmentation exists,
then an embedding II and a minimum cardinality augmenting edge set is com-
puted and true is returned. Otherwise, C' is not c-planar. If we get II, we can
apply the techniques used in the c-planarity embedding algorithm of Feng and
Eades for the connected clusters using II to obtain a c-planar embedding of C.
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Input: A clustered graph C' = (G, T') that contains a connected root cluster, a
non-connected child cluster v and an arbitrarily number of connected
child clusters.

Result : true if and only if there is a c-planar connectivity augmentation for
v; in the positive case an embedding II and the minimum cardinality
augmenting edge set will be computed.

Compute Csyp by splitting the non-connected cluster for each connected com-

ponent of the subgraph G(v);

Apply the c-planarity test by Cohen, Eades and Feng on Cjys;

if the test return false then

| return false;

Apply on Groa (see Theorem B} in respect to the vertices of G(v) the planar
connectivity augmentation algorithm;
if a planar connectivity augmentation exists then
Compute IT;
return true;
else
| return false;

Algorithm 2. The algorithm for clustered graphs C = (G,T) that contain a
connected root cluster, a non-connected child cluster v and an arbitrarily num-
ber of connected child clusters. It computes an embedding IT and the minimum
cardinality augmenting edge set if C' is c-planar.

Fig. 7. Constructing an auxiliary graph Gp.oq from the connected subgraph G(v) where
the incident edges of v are connected with a dummy vertex ¢ [FCE95]

Theorem 11. Let C = (G, T) be a connected clustered graph where its non-
connected clusters v have a connected parent cluster and only connected sibling
clusters. Let Csyp = (G, Tsup) be its c-split clustered graph. Let Gp,oq be the graph
constructed by the c-planarity test of Feng, Fades and Cohen applied to pa(v) of
Csup and where the subgraphs G(chl(pa(v))) are replaced with their wheel graphs.
If Csyp is c-planar and there exists for every non-connected cluster v a planar
connectivity augmentation for the vertices of the subgraph G(v) in Guoq then C
is c-planar.
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Proof. The proof is by construction. We extend the c-planarity test by Cohen,
Eades and Feng as follows: For every connected parent cluster pa(v) with a
non-connected child cluster v, we construct the graph G,,.q as stated in the
theorem (see Fig.[7]). Then we apply the linear time planarity test based on PQ-
trees [BLTBJCELG7] to Gmoq and in the positive case the planar connectivity
augmentation for the subgraph induced by the non-connected cluster [GJLT02].

As we do this recursively for every connected parent node that has a non-
connected cluster by taking the wheel graphs as constructed in the c-planarity
test into account, we can test c-planarity in O(n?) time where n is the number
of vertices of G. a

Theorem 12. Let C = (G, T) be a connected clustered graph where its non-
connected clusters v have a connected parent cluster and only connected sibling
clusters. C' can be tested for c-planarity and in the positive case embedded in
O(n?) time with respect to the number n of vertices of C.

Input: A clustered graph C' = (G,T) that contains a connected root cluster
and non-connected clusters with connected parent cluster and sibling
clusters.

Result : true if and only if there is a c-planar connectivity augmentation for
v; in the positive case an embedding II and the minimum cardinality
augmenting edge set will be computed.

Compute Csyup by splitting the non-connected cluster for each connected com-

ponent of the subgraph G(v);

Change the c-planarity test of Cohen, Eades and Feng as follows and apply it

to Csup;

for for every connected parent cluster of a non-connected cluster do

Construct Gioq as described in Theorem [T}

Test planarity of Gmod;

if the planarity test returns false then

| return false;

Apply the subgraph induced planar connectivity augmentation algorithm
for the vertices of G(v) in Gmod;

if a planar connectivity augmentation exists then
Compute IT;
return true;

else
| return false;

Algorithm 3. The algorithm for clustered graphs that contain a connected
root cluster and non-connected clusters with a connected parent cluster and
sibling clusters. It computes an embedding I7 and the minimum cardinality
augmenting edge set if C' is c-planar.

We note that this technique can be applied to connected clustered graphs
C = (G, T) where the non-connected clusters lie on the same path from the root
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to the leaves. This is done again by computing the c-split clustered graph Clyyp
for every connected component C; of C, testing it for c-planarity. In this step,
every connected component is modified with wheel graphs. Then we get graph
Gmod~

We now traverse the path of non-connected clusters in the original cluster
tree T' from the leaves to the root and apply to the vertices of these clusters
the planar connectivity augmentation algorithm |GILT02| in G,y,0q. This can be
done in O(n?) time where n is the number of vertices in the underlying graph
G. In the positive case, an embedding can be computed in O(n?) time.

Finally, we consider two non-connected clusters that are siblings in an ar-
bitrary clustered graph where all other clusters are connected and G is planar.
If the two clusters are contained in two different connected components (if ad-
ditionally the root is non-connected) or if they are contained in two different
biconnected components or in two different subtrees of a BC-tree, we can apply
the one-cluster-method for each connected or biconnected component indepen-
dently. This can be extended to an arbitrarily number of non-connected clusters
that are siblings under the condition that they are in different connected or
biconnected components.

Combining the techniques used in this paper, there is a large class of clustered
graphs that can now be tested for c-planarity.
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