Skip to main content

An Adaptive Hierarchical Model of the Ventral Visual Pathway Implemented on a Mobile Robot

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2525))

Included in the following conference series:

  • 2789 Accesses

Abstract

The implementation of an adaptive visual system founded on the detection of spatio-temporal invariances is described. It is a layered system inspired by the hierarchical processing in the mammalian ventral visual pathway, and models retinal, early cortical and infero-temporal components. A representation of scenes in terms of slowly varying spatio-temporal signatures is discovered through maximising a measure of temporal predictability. This supports categorisation of the environment by a set of view cells (view-trained units or VTUs [1]) that demonstrate substantial invariance to transformations of viewpoint and scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M Reisenhuber and T Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, 11(2):1019–1025, 1999.

    Google Scholar 

  2. P. Földiák. Learning invariance from transformation sequences. Neural Computation, 3(2):194–200, 1991.

    Article  Google Scholar 

  3. H. G. Barrow and A. J. Bray. A model of adaptive development of complex cortical cells. In I. Aleksander and J. Taylor, editors, Artificial Neural Networks II: Proceedings of the International Conference on Artificial Neural Networks. Elsevier Publishers, 1992.

    Google Scholar 

  4. M. Stewart Bartlett and T.J. Sejnowski. Learning viewpoint invariant face representations from visual experience in an attractor network. Network: Computation in Neural Systems, 9(3):399–417, 1998.

    Article  MATH  Google Scholar 

  5. E. T. Rolls and T. Milward. A model of invariant object recognition in the visual system: Learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Computation, 12:2547–2572, 2000.

    Article  Google Scholar 

  6. J. V. Stone and A. J. Bray. A learning rule for extracting spatio-temporal invariances. Network: Computation in Neural Systems, 6(3):429–436, 1995.

    Article  MATH  Google Scholar 

  7. J. V. Stone. Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Computation, 8(7):1463–1492, October 1996.

    Article  Google Scholar 

  8. L. Wiskott and T.J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 2002.

    Google Scholar 

  9. D. Martinez and A. Bray. Nonlinear blind source separation using kernels. IEEE: Neural Networks, Accepted, September 2002.

    Google Scholar 

  10. K. Kayser, W. Einhäuser, O. Dümmer, P. König, and K. Körding. Extracting slow subspaces from natural videos leads to complex cells. In ICANN 2001, LNCS 2130, pages 1075–1080. Springer-Verlag Berlin Heidelberg 2001, 2001.

    Google Scholar 

  11. A.J. Bray and D. Martinez. Kernel-based extraction of slow features: Complex cells learn disparity and translation invariance from natural images. Neural Information Processing Systems, NIPS, Submitted, 2002.

    Google Scholar 

  12. J. Hurri and A. Hyvarinen. Simple-cell-like receptive fields maximise temporal coherence in natural video. Submitted, http://www.cis.hut.fi/~jarmo/publications, 2002.

  13. M. Reisenhuber and T. Poggio. Models of object recognition. Nature Neuroscience, 3:1199–1204, November 2000.

    Google Scholar 

  14. A Arleo and W. Gerstner. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity. Biological Cybernetics, 83:287–299, 2000.

    Article  Google Scholar 

  15. James V. Stone. Blind source separation using temporal predictability. Neural Computation, (13):1559–1574, 2001.

    Google Scholar 

  16. D. Martinez and A.J. Bray. Kernel temporal component analysis (KTCA): nonlinear maximisation of temporal predictability. ESANN: European Symposium on Artificial Neural Networks, 2002.

    Google Scholar 

  17. E.T. Rolls and G. Deco. Computational Neuroscience of Vision. Oxford University Press, 2002.

    Google Scholar 

  18. B.A. Olhausen and D.J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607–609, 1996.

    Article  Google Scholar 

  19. A. J. Bell and T. J. Sejnowski. The independent components of natural scenes are edge filters. Vision Research, 37:3327–3338, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bray, A. (2002). An Adaptive Hierarchical Model of the Ventral Visual Pathway Implemented on a Mobile Robot. In: Bülthoff, H.H., Wallraven, C., Lee, SW., Poggio, T.A. (eds) Biologically Motivated Computer Vision. BMCV 2002. Lecture Notes in Computer Science, vol 2525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36181-2_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-36181-2_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00174-4

  • Online ISBN: 978-3-540-36181-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics