Skip to main content

Egocentric Direction and the Visual Guidance of Robot Locomotion Background, Theory and Implementation

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2525))

Included in the following conference series:

Abstract and Overview

In this paper we describe the motivation, design and implementation of a system to visually guide a locomoting robot towards a target and around obstacles. The work was inspired by a recent suggestion that walking humans rely on perceived egocentric direction rather than optic flow to guide locomotion to a target. We briefly summarise the human experimental work and then illustrate how direction based heuristics can be used in the visual guidance of locomotion. We also identify perceptual variables that could be used in the detection of obstacles and a control law for the regulation of obstacle avoidance. We describe simulations that demonstrate the utility of the approach and the implementation of these control laws on a Nomad mobile robot. We conclude that our simple biologically inspired solution produces robust behaviour and proves a very promising approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lappe, M. Bremmer, F.; & van den Berg, A.V.: Perception of self-motion from visual flow Trends in Cognitive Sciences 3 (1999) 329–336.

    Article  Google Scholar 

  2. Rushton, S.K., Harris, J.M., Lloyd, M.L. & Wann, J.P.: Guidance of locomotion on foot uses perceived target location rather than optic flow. Current Biology 8 (1998) 1191–1194

    Article  Google Scholar 

  3. Rogers, B.J. & Allison, R.S.: When do we use optic flow and when do we use perceived direction to control locomotion? Perception 28 (1999) S2

    Article  Google Scholar 

  4. Wood, R.M et al.: Weighting to go with the flow Current Biology 10 (2000) 545–546

    Article  Google Scholar 

  5. Harris, M.G. & Carré, G.: Is optic flow used to guide walking while wearing a displacing prism? Perception 30 (2001) 811–818

    Article  Google Scholar 

  6. Harris, J.M. & Bonas W.: Optic flow and scene structure do not always contribute to the control of human walking. Vision Research 42 (2002), 1619–1626

    Article  Google Scholar 

  7. Warren, W.H. et al: Optic flow is used to control human walking. Nature Neuroscience 4 (2001) 213–216

    Article  Google Scholar 

  8. Rushton, S.K. & Salvucci, D.D.: An egocentric account of the visual guidance of locomotion. Trends in Cognitive Science 5 (2001) 6–7

    Article  Google Scholar 

  9. Rushton, S.K. & Harris, J.M.: The utility of not changing direction and the visual guidance of locomotion (submitted).

    Google Scholar 

  10. Gibson J.J.: Visually controlled locomotion and visual orientation in animals. British Journal of Psychology 19 (1958) 182–194

    Article  Google Scholar 

  11. Loomis, J. M. & Beall, A. C.: Visually controlled locomotion: Its dependence on optic flow, three—dimensional space perception, and cognition. Ecological Psychology 10 (1998) 271–286

    Google Scholar 

  12. Lee, D. N. Guiding movement by coupling taus. Ecological Psychology 10 (1998) 221–250

    Google Scholar 

  13. Held, R., & Bossom, J.: Neonatal deprivation and adult rearrangement: complementary techniques for analyzing plastic sensory-motor coordinations. J. Comp. Physiol. Psychol. (1961) 33–37

    Google Scholar 

  14. Llewellyn KR.: Visual guidance of locomotion. Journal of Experimental Psychology 91 (1971) 245–261.

    Article  Google Scholar 

  15. Land, M.F. & Lee, D.N.: Where we look when we steer. Nature 369 (1994) 742–744.

    Article  Google Scholar 

  16. Murray, D.W., Reid, I.D. & Davison, A.J.: Steering without representation with the use of active fixation Perception 26 (1997) 1519–1528

    Article  Google Scholar 

  17. Donges, E. A two-level model of driver steering behavior Human Factors 20 (1978) 691–707.

    Google Scholar 

  18. Land, M.F..: The visual control of steering IN Harris, L.R. & Jenkin M. (eds): Vision and Action. Cambridge University Press.

    Google Scholar 

  19. Wann, J.P. & Land, M.F.: Steering with or without the flow: is the retrieval of heading necessary? Trends in Cognitive Science 4 (2000) 319–324

    Article  Google Scholar 

  20. Bootsma, R.J.: Predictive information and the control of action: what you see is what you get. International Journal of Sports Psychology 22 (1991) 271–278

    Google Scholar 

  21. Regan, D. & Kaushall, S.: Monocular judgements of the direction of motion in depth. Vision. Research 34 (1994) 163–177

    Article  Google Scholar 

  22. Laurent, M., Montagne G. & Durey A.: Binocular invariants in interceptive tasks: a directed perception approach. Perception 25 (1996) 1437–1450

    Article  Google Scholar 

  23. Smeets, J.B.J. & Brenner, E.: A new view on grasping. Motor Control 3 (1999) 237–271

    Google Scholar 

  24. Warren WH & Whang S.: Visual guidance of walking through apertures: body-scaled information for affordances. Journal Experimental Psychology Human Perception and Performance 13 (1987) 371–83

    Article  Google Scholar 

  25. Lee, D.N.: A theory of visual control of braking based on information about time-to-collision. Perception 5 (1976) 437–459.

    Article  Google Scholar 

  26. Rushton, S.K. & Wann, J.P.: Weighted combination of size and disparity: a computational model for timing a ball catch. Nature Neuroscience 2 (1999) 186–190

    Article  Google Scholar 

  27. Peper, L., Bootsma, R,J,, Mestre, D.R. & Bakker, F.C.: Catching Balls—How To Get The Hand To The Right Place At The Right Time. Journal Of Experimental Psychology-Human Perception And Performance 20 (1994) 591–612

    Article  Google Scholar 

  28. Girshick, A. R., Rushton, S.K., and Bradshaw, M.F.: The use of predictive visual information in projectile interception. Investigative Ophthalmology and Visual Science, 42 (2001) 3335

    Google Scholar 

  29. Duchon, A.P. & Warren, W.H.: Path Planning vs. on-line control in visually guided locomotion. Investigate Ophthalmology & Vision Science 38 (1997) 384.

    Google Scholar 

  30. Fajen, B.R., Warren, W.H., Temizer, S & Kaelbling, L.P.: A dynamical model of visually-guided steering, obstacle avoidance, and route selection (in press) International Journal of Computer Vision

    Google Scholar 

  31. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5 (1986) 90–99.

    Google Scholar 

  32. Duchon, A.P, Warren, W.H. & Kaelbling, L.P.: Ecological Robots. Adaptive Behavior 6 (1998) 473–507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rushton, S.K., Wen, J., Allison, R.S. (2002). Egocentric Direction and the Visual Guidance of Robot Locomotion Background, Theory and Implementation. In: Bülthoff, H.H., Wallraven, C., Lee, SW., Poggio, T.A. (eds) Biologically Motivated Computer Vision. BMCV 2002. Lecture Notes in Computer Science, vol 2525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36181-2_58

Download citation

  • DOI: https://doi.org/10.1007/3-540-36181-2_58

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00174-4

  • Online ISBN: 978-3-540-36181-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics