Skip to main content

Contour Detection by Synchronization of Integrate-and-Fire Neurons

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2525))

Included in the following conference series:

Abstract

We present a biologically inspired spiking neural network which is able to detect contours in grey level images by synchronization of neurons. This network is made of integrate-and-fire neurons, spaced on a triangular network, whose oriented receptive field is constructed by a wavelet which specifically detects edges. The neurons are excitatorily and locally connected between receptive fields that tend to detect the same contour. A contour, if its width is not too large, activates a chain of neurons, with some heterogeneity in the inputs. The capacity of a chain tosync hronize with respect tosuc h heterogeneity is studied. Synchronization on a contour is found to be possible for a sufficiently large width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Field, D. J., Hayes, A., Hess, R. F.: Contour Integration by the Human Visual System: Evidence for a Local “Association Field”. Vision Res. 33 (1992) 173–193

    Article  Google Scholar 

  2. von der Malsburg, C.: The Correlation Theory of Brain Function. MPI Biphysical Chemistry, Internal Report 81-2. Reprinted in: Domany, E., van Hemmen, J., Schulten, K. (eds): Models of Neural Networks, Vol. 2 of Physics of Neural Networks. Springer-Verlag, New York (1994) 95–120

    Google Scholar 

  3. von der Malsburg, C., Schneider, W.: A Neural Cocktail-Party Processor. Biol. Cybern., 54 (1986) 29–40

    Article  Google Scholar 

  4. Engel, A. K., König, P., Singer, W.: Direct Physiological Evidence for Scene Segmentation by Temporal Coding. Proc. Natl. Acad. Sci. USA 88 (1991) 9136–9140

    Google Scholar 

  5. Singer, W.: Neuronal Synchrony: a Versatile Code for the Definition of Relations? Neuron 24 (1999) 49–65

    Article  Google Scholar 

  6. Hubel, D. H., Wiesel, T. N.: Receptive Fields, Binocular Interaction and Functionnal Architecture in the Cat’s Visual Cortex. J. Physiol. (London) 160 (1962) 106–154

    Google Scholar 

  7. Li, Z.: A Neural Model of Contour Integration in the Primary Visual Cortex. Neural Comput. 10 (1998) 903–940

    Article  Google Scholar 

  8. Yen, S.-C., Finkel, L.: Extraction of Perceptually Salient Contours by Striate Cortical Networks. Vision Res. 38 (1998) 719–741

    Article  Google Scholar 

  9. Yen, S.-C., Finkel, L. H.: Identification of Salient Contours in Cluttered Images. In: Computer Vision and Pattern Recognition (1997) 273–279

    Google Scholar 

  10. Choe, Y.: Perceptual Grouping in a Self-Organizing Map of Spiking Neurons. PhD thesis, Department of Computer Sciences, University of Texas, Austin. TR A101-292 (2001)

    Google Scholar 

  11. Petkov, N., Kruizinga, P.: Computational Models of Visual Neurons Specialised in the Detection of Periodic and Aperiodic Oriented Visual Stimuli: Bar and Grating Cells. Biol. Cybern. 76 (1997) 83–96

    Article  MATH  Google Scholar 

  12. Flandrin, P.: Temps-Fréquence. Hermes, Paris, 2nd ed. (1998)

    Google Scholar 

  13. Dayan P., Abbott L. F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)

    Google Scholar 

  14. Tuckwell, H. C.: Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  15. Mirollo, R. E., Strogatz, S. H.: Synchronization of Pulse-Coupled Biological Oscillators. SIAM J. Appl. Math. 50 (1990) 1645–1662

    Article  MathSciNet  MATH  Google Scholar 

  16. Tsodyks, M., Mitkov, I., Sompolinsky, H.: Pattern of Synchrony in Inhomogeneous Networks of Oscillators with Pulse Interactions. Phys. Rev. Lett. 71 (1993) 1280–1283

    Article  Google Scholar 

  17. Hansel, D., Neltner, L., Mato, G., Meunier, C.: Synchrony in Heterogeneous Networks of Spiking Neurons. Neural Comput. 12 (2000) 1607–1641

    Article  Google Scholar 

  18. Ren, L., Ermentrout, G. B.: Monotonicity of Phaselocked Solutions in Chains and Arrays of Nearest-Neighbor Coupled Oscillators. SIAM J. Math. Anal. 29 (1998) 208–234

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hugues, E., Guilleux, F., Rochel, O. (2002). Contour Detection by Synchronization of Integrate-and-Fire Neurons. In: Bülthoff, H.H., Wallraven, C., Lee, SW., Poggio, T.A. (eds) Biologically Motivated Computer Vision. BMCV 2002. Lecture Notes in Computer Science, vol 2525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36181-2_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36181-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00174-4

  • Online ISBN: 978-3-540-36181-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics