
Processing Schedules using Distributed

Ontologies on the Semantic Web

Terry R. Payne, Rahul Singh, and Katia Sycara

The Robotics Institute, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh PA 15232, USA.

Abstract. The Semantic Web uses formal distributed ontologies for rep-
resenting relationships among concepts in the real world. A structured
framework such as this allows agents to peruse and reason about pub-
lished knowledge without the need for scrapers, information agents, and
centralized ontologies. However, in order to process any information, an
agent must be familiar with the underlying ontology used to markup that
information. However, no single agent can be expected to be familiar
with all possible ontologies that may be available on the Semantic Web.
Therefore, translation services that transform concepts defined within
previously unknown ontologies into known concepts allow agents to un-
derstand the available information and hence achieve their goal. This
transformation may be achieved by invoking specific markup translation
services or by logical reasoning through other shared ontologies. The
RETSINA Calendar Agent (RCal) is a Distributed Meeting Scheduling
Agent that processes schedules marked up on the Semantic Web, and
imports them into the user’s Personal Information Manager. Transla-
tion services, which are used to translate unknown concepts into known
concepts, which are located using a DAML-S based service discovery
mechanisms. In this paper, we present RCal, and demonstrate how it
extracts and uses meaningful knowledge from the semantic markup. In
addition, we describe how web-service discovery mechanisms are used
when new concepts are encountered.

1 Introduction

The World Wide Web was originally designed as a distributed information space
that seamlessly supported human navigation through related, linked documents.
Although this medium was designed to do more than simply support human-
to-human communication [3], machine or agent mediated assistance has been
hindered by the type of markup used within the documents. An emphasis by
content providers on presentation and physical design has resulted in a lack of
structure, both at the layout and content levels, and rendered most documents
opaque to machine comprehension. In addition, the web has evolved from a
distributed repository of documents, to a linked network of services offering
not only the delivery of dynamic information, but offering functional services
(e.g. currency conversions), e-commerce services (e.g. airline reservation or retail

services), and home-management services (e.g. paying bills or managing bank
accounts). However, access to these services is still human oriented, and not
amenable to automation.

The Semantic Web [3] goes beyond the World Wide Web by encoding knowl-
edge using a structured, logically connected representation, and providing sets
of inference rules that can be used to conduct automated reasoning. Since the
Semantic Web does not require content providers to use a single centralized on-
tology; but instead supports the use of many different ontologies, it is unrealistic
to assume that agents and services will understand all possible markup. Hence
many different agents providing specific services will translate/convert informa-
tion from one ontology to another as required, thus encapsulating and providing
specific functionality to the user. Also, given that the Semantic Web is dynamic
and evolving, not only will there be several ontologies for describing a domain,
but these will be extended over time, and new ontologies will be created. Al-
though an agent may be designed to understand one, or even several ontologies
for a given domain, it will encounter new markup using previously unknown on-
tologies. For this reason, an agent should be able to adapt its model or reasoning,
and make use of third-party services to achieve interoperation between the new
markup and known markup.

An essential capability of any agent within an open framework such as the
Semantic Web is the ability to locate and interoperate with other services [13, 14,
10]. To locate these, an agent has to be able to describe the desired capabilities
of some service and interact with a discovery infrastructure. Such infrastructures
typically consist of broker or yellow-pages services that help agents (i.e. service
requesters) find service providers [14]. Brokers typically have knowledge of both
the capabilities and preferences of different agents and services [16], and are often
found within market-based systems. Matchmakers, yellow pages or directory
agent systems [14, 15] would only possess knowledge about the capabilities of
service providers through capability advertisements. Thus, if an agent has some
preferences, it can query a Matchmaker, which then returns a list of services that
provide the desired capabilities specified by the preference query.

Existing Web-Service languages, such as WSDL, ebXML, UDDI etc facilitate
the automation of services on the web by providing semi-structured descriptions
of services in terms of their providers, their functionality or workflow and their
interfaces. This structure-representation may facilitate some level of automation
for tasks such as human-oriented database search and the formation of messages
understood by a service’s interface. However, automatic composition of meta-
services and interoperation between these services can only be achieved through
the use of semantic-based frameworks such as DAML-S [1, 2].

DAML-S is a DAML+OIL [4] ontology for describing the properties and
capabilities of web services. It consists of descriptive semantics for describing
what the service does (though an advertised Service-Profile), how the service
works (though a Service-Model) and how it can be invoked (though a Service-
Grounding). The Service-Grounding builds upon the WSDL and SOAP stan-
dards for describing the service interface and a communication framework. A

DAML-based Discovery Service [9] stores the advertised service descriptions (i.e.
Service-Profiles), and uses a semantic matching engine to compare these with
service requests. Upon receiving the results of a request-for-service, an agent can
then contact the service, by following the description in the Service-Model, and
generating the SOAP messages via the Service-Grounding.

In this paper, we present a domain specific agent - the RETSINA Calendar
Agent (RCal), which understands semantic markup for schedules and events, and
show how service discovery using DAML-S can be employed to find translation
services when new markup is encountered. The organization of the paper is as
follows: in Section 2, we describe RCal, and describe how it utilizes and reasons
about Semantic Web schedules. Section 3 discusses the role of service discovery
and translation services. We then contrast this work with related systems and
conclude the paper in Section 4.

2 RCAL - RETSINA Calendar Agent

The RETSINA Calendar Agent (RCAL)1 is a distributed meeting scheduling
agent that reasons about events within schedules such as conference programs
and class schedules published on the Semantic Web. It maintains an up-to-date
model of the user’s current and upcoming events and uses this information to
schedule meetings on behalf of the user. The agent’s effectiveness in scheduling
meetings autonomously without conflicts depends upon the accuracy of this
model. Although many Calendar Agents have previously been developed that
manage meeting requests on behalf of the user [5, 7], they are only effective if
they have an up-to-date, high fidelity model of the user’s preferences and current
activities. Machine-learning techniques can be used to induce the user model,
which can then be used to guide the agent when scheduling regular appointments.
However, this approach cannot anticipate new, infrequent or unexpected events,
and hence the user generally has to manually enter in those activities and events
to notify the agent that these times are busy. Thus, to provide assistance and
reduce the load on their user, calendar agents paradoxically require significant
effort from the user to maintain an accurate, valid model of the user’s current
schedule. RCal addresses this problem by simplifying the acquisition of schedule
markup from the Semantic Web, and importing this directly into the user’s
calendar. The gain lies in the fact that users no longer need to accurately type
in each event that they would like to attend but rather only need to direct the
agent to a schedule that the agent can reason about and automatically add into
the calendar. In addition to this, other services can also be dynamically offered
to the user, depending upon the content of the schedules browsed.

RCal works synergistically with a commercial Personal Information Manager
(PIM)2. It retrieves appointments and contact details from the PIM, and uses
these to locate potential meeting slots. Current and upcoming appointments,
and contact details of people known to the user are retrieved from the PIM.
1 RCal is available for download from http://www.daml.ri.cmu.edu/Cal
2 The Personal Information Manager used here by RCal is Microsoft Outlook 2000

Fig. 1. The RCAL Semantic Web Schedule Browser.

This information is then used while negotiating and reasoning about available
meeting times with other RCal agents. A user can specify a desire for a meeting
with several other individuals over a given epoch (for example, “arrange a meet-
ing sometime next Tuesday with the members of my team”). The user’s RCal
agent will then negotiate with other RCal agents (associated with the other in-
dividuals) to determine mutually available time slots for a meeting. The actual
negotiation of possible meeting times is based on the Contract Net Protocol [12],
whereby contracts are sent out to each of the agents involved to solicit possible
meeting times. Bids returned by the agents are evaluated to determine a suitable
meeting time. Once a mutually agreeable meeting time is found (which may re-
quire several negotiation cycles with changing time constraints), it is announced
using awards sent out in response to the bids. The agents involved in the negoti-
ation then confirm the selected meeting time, and update the calendars of their
respective users.

As well as using RCal to schedule meetings with other RCal users, the agent
can be used to navigate and import schedules marked up on the Semantic Web.
This might include one-off schedules such as conference programs, or new, re-
curring appointments such as class schedules. The user can either type in the
URI of the schedule markup, or select and submit a schedule via a button on a

<foaf:Person ID="terrypayne">
 <foaf:name>Terry Payne</foaf:name>
 <foaf:mbox resource="mailto:terryp@cs.cmu.edu"/>
 <foaf:workplaceHomepage resource="http://www.cs.cmu.edu/~terryp"/>
 <foaa:RCalendarAgentName>terry_acm.org-CalAgent</foaa:RCalendarAgentName>
</foaf:Person>

<ical:VCALENDAR ID="TAC01">
 <dc:title>Trading Agent Competition 2001 Workshop</dc:title>
 <dc:contributor resource="#terrypayne"/>
 <dc:date>2001-10-03</dc:date>

 <ical:VEVENT-PROP resource="http://www.tac.org/2001event.rdf#PainInNEC"/>

 <ical:VEVENT-PROP>
 <ical:VEVENT ID="RetsinaTrading">
 <ical:DTSTART>
 <ical:DATE-TIME><value>20011014T134500</value></ical:DATE-TIME>
 </ical:DTSTART>
 <ical:DTEND>
 <ical:DATE-TIME><value>20011014T140000</value></ical:DATE-TIME>
 </ical:DTEND>
 <ical:LOCATION resource="#HRTampa" />
 <ical:ATTENDEE resource="http://www.daml.ri.cmu.edu/people.rdf#ks" />
 <ical:ATTENDEE resource="http://www.daml.ri.cmu.edu/people.rdf#yn" />
 <ical:DESCRIPTION>Presentation: Retsina</ical:DESCRIPTION>
 </ical:VEVENT>
 </ical:VEVENT-PROP>
</ical:VCALENDAR>

Fig. 2. A Schedule containing two events.

web page3. Schedules can be browsed using the agent’s Semantic Web Schedule
Browser (Fig. 1), and compared with existing appointments to identify con-
flicting events. These schedules and the contact details of people attending the
meetings can be imported into the user’s PIM. For example, a user may browse
the talks being given at a conference, and then import only those talks of in-
terest. Notifications can also be associated with each talk and sent to a mobile
device (such as a PDA or mobile-phone) to remind the user when each talk is
about to start.

The Semantic Web expresses concepts and their properties using the Re-
source Description Framework (RDF) [6], which is in turn expressed in XML.
RDF encodes concepts and their relationships as sets of triples, where each triple
represents a subject, predicate and an object. Both subject and object can, in
turn, be related to other concepts using additional properties (or predicates),
forming a directed graph. RDF extends this natural structure by allowing con-

3 Currently, this technique relies on the use of cookies to share the RCal agent’s name
with the web page. When the submit button is pressed, a browse request containing
the relevant URI is automatically sent to the agent, which then displays this schedule
in the schedule browser (Fig. 1).

cepts to be represented by URIs to other concepts. Thus, concepts are no longer
terms bound to a single node, but unique definitions that can be shared by mul-
tiple documents. For example, one could refer to the author of a paper by their
name, but as that name is unlikely to be unique, it becomes problematic to rea-
son about what other papers have been written by the same author. However,
the author could be represented by a URI referring to the concept that uniquely
defines that author, and thus avoid ambiguities when reasoning. In addition, the
author concept may contain properties to other concepts, thus providing a richer
environment for reasoning.

Calendar schedules are marked up using several different ontologies. The
schedules and events themselves are described using the Hybrid RDF Calendar
Ontology (iCal)4. This ontology is based upon several Calendar specifications,
including those from the Calendaring and Scheduling (calsch) Working Group,
Distributed Scheduling Protocol (CHRONOS) IETF Working Group, and the
iCalendar specification. <ical:ATTENDEE> resources are currently described
using the Friend-of-a-Friend ontology5, and the Dublin Core ontology6 is used
to provide meta-data about the schedule. An example of a schedule is presented
in Fig. 2.

Fig. 3. Browsing schedules and invoking context-based services/agents.

A document may contain one or more calendars or schedules, represented by
instances of the <ical:VCALENDAR> class. Each instance may include several
properties, such as <ical:VEVENT-PROP>, which connect a <ical:VCALENDAR>
to an event class, or a date-time stamp (<ical:DTSTAMP>).However, this markup
is not limited to the elements described in the iCal ontology; properties de-
fined by other ontologies can be reused to enhance the document. In this case,
properties defined by the Dublin Core ontology are used to provide additional
information about a schedule, such as its title, description, author etc. The cal-
endar may contain several events, represented by an event class (such as a single
event or meeting, <ical:VEVENT>, or recurring events, <ical:REC-VEVENT>).
4 For the iCal ontology, see http://ilrt.org/discovery/2001/06/schemas/ical-

full/hybrid.rdf
5 For the Friend of a Friend ontology, see http://xmlns.com/foaf/0.1/
6 For the Dublin Core ontology, see http://dublincore.org

These may be defined inline within the document (as in the “RetsinaTrading”
event in Fig. 2), or referenced by a URI to a resource in the same or an ex-
ternal document (e.g. the “http://www.tac.org/2001event.rdf#PainInNEC”
resource). Another example of resource reuse is the markup of an individual’s
contact details. Such details may be encoded using the Friend-of-a-Friend or
DAML Markup Agenda (DMA)7 ontologies, and used by many agents, services
and other Semantic Web tools. Currently, RCal will recognize an individual’s
resource description marked up using the Friend-of-a-Friend ontology.

<dma:Speaker rdf:ID="payne">
 <dma:name>Terry Payne</dma:name>
 <dma:email>terryp@cs.cmu.edu</dma:email>
 <dma:homePage>
 http://www.cs.cmu.edu/~terryp
 </dma:homePage>
</dma:Speaker>

<foaf:Person rdf:ID="payne">
 <foaf:name>Terry Payne</foaf:name>
 <foaf:mbox
 rdf:resource="mailto:terryp@cs.cmu.edu"/>
 <foaf:workplaceHomepage>
 rdf:resource="http://www.cs.cmu.edu/~terryp"/>
</foaf:Person>

Fig. 4. Markup for contact details using the DAML Markup Agenda (DMA) ontology
and the Friend of a Friend (foaf) ontology.

The ability to refer to resources defined in different ontologies facilitates the
navigation of information not directly related to a schedule. For example, RCal
locates the name property of an <ical:ATTENDEE> (i.e. the <foaf:Person>
concept illustrated in Fig. 2) when listing the events within the semantic web
schedule browser. Other information, such as email or webpage properties may
also be defined. These can be used to facilitate additional browsing or offer ad-
ditional services. For example, a browser could be invoked to display the web
page, or a mail client to send an email, if this information is available. If the
<ical:ATTENDEE> concepts in Fig. 2 contain more than just a first and last
name, then additional services are offered to the user when the user selects a con-
cept (e.g. the user right-clicks the <ical:ATTENDEE> concept “Katia Sycara”
in Fig. 3). These properties can also be used to query service providers (i.e.
other agents) via a discovery infrastructure (such as a DAML-S Matchmaker
[9]). This form of serendipitous service discovery (as opposed to goal-directed
service discovery) attempts to find any service that might be of use to the user.

3 Discovery Services and Translation Agents

Whilst RCal can provide browsing and download functionality for schedules
marked up using known ontologies, it is unable to understand markup using
7 See http://www.daml.org/2001/10/agenda/

unknown ontologies such as the DAML Markup Agenda (DMA) Ontology or
that used by ITTalks8[11]. RCal overcomes this limitation by seeking transla-
tion services that convert the new concepts into known concepts. An exam-
ple of this is the DMA2FOAF translation service9 that translates markup for
<dma:Speaker> concepts and converts these into <foaf:Person> concepts
(see Fig 4).

DAML-S
Matchmaker

1) DAML-S profile
containing capability
description

2) Service
RequestRequestues

RCAL AgentR3) Returned profiles 3) Returned profiles
of the matching
Services 4) RCal selects the service

that performs the
appropriate translation

DMA2ICAL Event
Translation Service

DMA2FOAF
Translation Service

ent invokes the) Agen5) Ag
Service, which translates ServicSeSe
the <dma:Speaker>
concept into an
<foaf:Person> concept

Fig. 5. Advertising and requesting services from the DAML-S Matchmaker

The DMA2FOAF translation service describes its capabilities using the DAML-
S [1, 2] service description. This includes information about the Process Model,
i.e. what the service does; the Service Profile i.e. the capability advertisement;
and the Service Grounding, which describes how the service is contacted. When
this service is made available on the Semantic Web, it advertises its capabilities
with a DAML-S Matchmaker (Fig. 5, Step 1). The RCal agent then detects an
unknown concept within the markup, and constructs a request for service based
on this concept. This request consists of the properties found within the unknown
concept, and the properties desired from the FOAF ontology (Fig 6.). This is
then submitted to the DAML-S Matchmaker (Fig. 5 Step 2), which performs a
semantic capability match between the request and the stored Service Profiles,
before returning a list of possible matching services (Fig. 5 Step 3). RCal then
selects and invokes one of the returned services (in this case - DMA2FOAF in
Fig. 5 Step 4), by sending it a query containing the values of the properties

8 For the ITTalks ontologies, see http://daml.umbc.edu/ontologies/calendar-ont
9 http://www.daml.ri.cmu.edu/site/projects/DMATranslation/ont/DMA2FOAF.daml

found within the unknown concept. The service then returns the properties of
the known <foaf:Person> concept and RCal utilizes this concept accordingly.

<profile:NeededService rdf:ID="my_request">
 <profile:serviceCategory rdf:ID="&category;#OntologyTranslation" />
 <profile:input>
 <profile:ParameterDescription rdf:ID="inSpeaker">
 <profile:parameterName>inSpeaker</profile:parameterName>
 <profile:restrictedTo rdf:resource="&dma;#Speaker" />
 </profile:ParameterDescription>
 </profile:input>
 <profile:output>
 <profile:ParameterDescription rdf:resource="outPerson">
 <profile:parameterName>outPerson</profile:parameterName>
 <profile:restrictedTo rdf:resource="&foaf;#Person" />
 </profile:ParameterDescription>
 </profile:output>
</profile:NeededService>

Fig. 6. Constructing a Request for a translation service.

The use of concept-to-concept translation services may provide a suitable
mapping between the markup using two ontologies, but not a more generic solu-
tion that can be more easily applied to markup using other ontologies. Various
schemes (such as Onion [8]) identify the correspondence between different ontolo-
gies, and can be used to define domain dependent rules for markup translation.
However, such rules would also need locating if not linked to the unknown on-
tology, and hence could be advertised as static markup.

4 Conclusions and Related Work

This paper demonstrates how service discovery and information sharing can al-
low agent communities to locate and present relevant services to a user, based
on the information that is being browsed. Although several different ontologies
may be used to markup content, translation services can transform unknown
markup into that which can be understood by the agent. RCal makes use of a
serendipitous search to look for services that may be of use to the user, based on
selected resources. However, in a service rich environment, many irrelevant ser-
vices may be presented to the user. Thus, work is currently underway to develop
profiles of the user’s interest, and to infer context (such as locating restaurants
in favor of hardware stores when examining the location of a conference site).
The ITTalks Agent system [11] is an existing web-based system that provides
automated, intelligent notification of information technology seminars. Profiles

of user preferences, annotated in DAML+OIL [4], are used to suggest those sem-
inars that might be of interest to the user. These examples demonstrate how, by
combining the semantics now available through the Semantic Web, communities
of agents can interoperate and work synergistically to provide better access to
information and functionality than was previously available on the World Wide
Web.

Acknowledgements

The research was funded by the Defense Advanced Research Projects Agency as
part of the DARPA Agent Markup Language (DAML) program under Air Force
Research Laboratory contract F30601-00-2-0592 to Carnegie Mellon University.
Special thanks goes to L. Miller and S. Decker for proposing the original Semantic
Web Calendar Challenge, and to O. Lassila for some illuminating discussions
about the Calendar Agent Assistance Paradox.

References

1. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng. DAML-S: Seman-
tic markup for web services. In International Semantic Web Working Symposium,
pages 411–430, 2001.

2. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, D. Martin,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S: Web
service description for the semantic web. In Proceedings of the 1st International
Semantic Web Conference (ISWC), 2002.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, 2001.

4. J. Hendler and D. L. McGuinness. DARPA Agent Markup Language. IEEE
Intelligent Systems, 15(6):72–73, 2001.

5. R. Kozierok and P. Maes. A Learning Interface Agent for Scheduling Meetings.
In Proceedings of the ACM-SIGCHI International Workshop on Intelligent User
Interfaces, pages 81–88. New York, New York:ACM Press, 1993.

6. O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. http://www.w3.org/TR/REC-rdf-syntax/, 1999.

7. T. Mitchell, R. Caruana, D. Freitag, J. McDermott, and D. Zabowski. Experience
with a Learning Personal Assistant. Communications of the ACM, 37(7):81–91,
1994.

8. P. Mitra, G. Wiederhold, and S. Decker. A scalable framework for the interopera-
tion of information sources. In Semantic Web Working Symposium, pages 317–329,
2001.

9. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web
Services Capabilities. In First International Semantic Web Conference, 2002.

10. T. Payne, K. Sycara, M. Lewis, T. L. Lenox, and S. K. Hahn. Varying the user
interaction within multi-agent systems. In Autonomous Agents 2000, 2000.

11. R.Scott Cost et. al. ITTalks: A case student in how the semantic web helps. In
Int. Semantic Web Working Symposium, pages 477–494, 2001.

12. R. G. Smith. The Contract Net Protocol: High-Level Communications and Control
in a Distributed Problem Solver. IEEE Transactions on Computers, C29(12), 1980.

13. K. Sycara, K. Decker, A. S. Pannu, M. Williamson, and D. Zeng. Distributed
intelligent agents. IEEE Expert, 11(6):36–46, December 1996.

14. K. Sycara, K. Decker, and M. Williamson. Middle-agents for the internet. In
Proceedings of IJCAI-97, January 1997.

15. K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service matchmaking among
agents in open information environments. SIGMOD Record (ACM Special Interests
Group on Management of Data), 28(1):47–53, 1999.

16. M. Wellman. A Market-Oriented Programming Environment and its Application
to Distributed Multicommodity flow problems. Journal of Artificial Intelligence
Research, 1:1–23, 1993.

