
Process Aggregation using Web Services

Mark Hansen1, Stuart Madnick2, Michael Siegel2

1 MIT Sloan School of Management, E53-321, 30 Wadsworth St, Cambridge, MA 021239
khookguy@yahoo.com

2 MIT Sloan School of Management, E53-321, 30 Wadsworth St, Cambridge, MA 021239
{smadnick, msiegel}@mit.edu

Abstract. This paper examines the opportunities and challenges related to data
and process integration architectures in the context of Web Services. A primary
goal of most enterprises in today’s economic environment is to improve
productivity by streamlining and aggregating business processes. This paper
illustrates how integration architectures based on Web Services offer new
opportunities to improve productivity that are expedient and economical. First,
the paper introduces the technical standards associated with Web Services and
provides business example for illustration. Abstracting from this example, we
introduce a concept we call Process Aggregation that incorporates data
aggregation and workflow to improve productivity. We show that Web
Services will have a major impact on Process Aggregation, making it both
faster and less expensive to implement. Finally, we suggest some research
directions relating to the Process Aggregation challenges facing Web Services
that are not currently being addressed by standards bodies or software vendors.
These include context mediation, trusted intermediaries, quality and source
selection, licensing and payment mechanisms, and systems development tools.

1 Introduction

Web Services, a programming paradigm for integrating heterogeneous information
systems, offers significant advantages over the currently available set of ad-hoc
methods based on proprietary software tools. These advantages have been widely
discussed in the popular Information Technology press1. Because the Web Services
paradigm is based on a new set of standards (e.g., XML, SOAP, WSDL, UDDI)2 it
promises to enable data integration over corporate intranets once these standards are
supported by the information systems underlying a corporation’s business process.
These standards are being widely adopted in industry as evidenced by Microsoft’s

1 “Vendors Rally Behind Web Services Spec”, InformationWeek, November 27, 2000; “Web

Services Move One Small Step Closer To Reality”, InformationWeek, February 12, 2001
2 Section 3.2 defines these acronyms.

.NET initiative and Sun’s Java APIs for XML (JAX) extensions to the Java 2
Platform, Enterprise Edition (J2EE). [12]

Given the recent surge of interest in Web Services within industry, it is appropriate
to look at this paradigm from a research standpoint and determine what we can learn
by comparing Web Services with other integration paradigms. In particular, we take
the position that the integration of heterogeneous information systems using the Web
Services paradigm can be viewed as a form of aggregation, namely Process
Aggregation.

Using that analogy, we investigate the challenges researchers have uncovered
related to aggregation [1][2][3][4][7][13] and examine them in the Web Services
context. Foremost among these challenges are the issues of semantics and context
mediation.

2 Example of a Systems Integration Architecture Based on Web
Services3

Global Telecom (GT) is a worldwide provider of voice and data (Internet)
communications services to global corporations. GT has grown by acquisition and
has a variety of information systems in different parts of the world that need to be
integrated to provide service to their global enterprise customers

For example, consider the Order Management System (OMS) required by the
corporate headquarters. When a global customer, such as Worldwide Consultants
(WC), asks GT to bid on a contract to provide services, GT must turn to its various
global subsidiaries to provision the circuits to fulfill this order. The process starts by
creating a master order in the corporate OMS. The order is communicated to each
subsidiary to develop a provisioning plan in their geography. The subsidiaries’ plans
are sent up to the corporate systems and integrated into a global provisioning plan.
Integration of these heterogeneous subsidiary systems with the OMS requires both
data and process integration. It also required integration with subsidiary support
systems (e.g., Trouble Tickets, Usage Statistics). It is an example of what we call
Process Aggregation4.

2.1 Potential Solutions

GT considered a spectrum of alternatives for building a Process Aggregator for the
OMS, summarized in the table below.

3 Although the details are fictitious, this example is based on real examples of Process

Aggregation challenges faced in the telecommunications industry.
4 Formal definition in Section 3.1.

Integration Alternative Description
Single System This approach involves replacing all the divisional

components with a single, integrated, system.
Component Interfaces This approach involves modifying all the divisional

components to provide a Web Services interface.
Web Process Wrappers This approach involves wrapping the existing divisional

components with a thin layer of code to provide a Web
Service interface.

GT wanted to implement the Single System alternative because it would

standardize processes throughout the organization and reduce the amount of custom
code development and maintenance required to interface corporate with divisional
systems. However, there were several problems that prevented GT from pursuing this
option. First, replacing all the divisional systems would be a multi-year, hugely
expensive, project that would require complete retraining the existing divisional
Information Technology (IT) employees and end users. Expensive consultants would
be needed to assist with installation, configuration, and extensive retraining.5
Additionally, GT was acquiring companies and needed a quick way to integrate them
with corporate systems.

Considering these challenges, GT decided to implement a five-year plan to
standardize divisional systems. In the mean time, GT decided to create custom
interfaces between divisional and corporate systems. By building prototype Web
Services interfaces for one division, GT determined that this approach leveraged local
knowledge to quickly create the interfaces to the OMS. Some divisional systems had
interfaces where the fast and simple task of building Web Process Wrappers was
sufficient. In other cases, more work was required to modify a divisional system to
create a Component Interface supplying Web Services to the OMS.

Research on information aggregation has been going on for a long time, but with
the advent of the Internet there has been a new focus on the entities that aggregate
information from heterogeneous web sites – often referred to as “aggregators”[3].
Much of this research focuses on the semantic and contextual challenges of
aggregation [6][7], and as we will see in Section 5 many of these challenges remain
when applying the Web Services paradigm to Process Aggregation.

Before getting into Process Aggregation, however, we should note that Web
Services do solve a number of the technical challenges faced by early Internet
aggregators. These aggregators had to overcome technical challenges related to

5 Lisa Vaas, “Keeping Air Force Flying High,” eWeek, 22 October 2001, available at
http://www.eweek.com/print_article/0,3668,a%253D16944,00.asp / Excerpt: “…The outcome
wasn’t good. After three painstaking years and a substantial investment — Dittmer declined to
quote a cost — a mere 27 percent of the original code’s functionality had been reproduced.
Originally, Dittmer said, they had expected to retrieve 60 percent of functionality. Eventually,
the Air Force killed the project. … Rewriting the systems from scratch would have eaten up
an impermissibly large chunk of the Air Force’s budget. ‘We don’t have the money to go out
and say, ‘OK, let’s wholesale replace everything,’ Jones said …”

integration of data source sites that were not originally developed with the intent of
supporting aggregation. Screen scraping and “web farming” [5] techniques were
developed where the aggregator accessed the source site as if it were a user and
parsed the resulting Hyper Text Markup Language (HTML) to extract the information
being aggregated.

The Web Services paradigm solves some of the technical integration challenges by
standardizing the infrastructure for data exchange. However, the Web Services
paradigm also assumes that application components are designed with the intention of
being aggregated. This assumption raises new challenges discussed in Section 5.

2.2 Implementing Web Services Interfaces

Implementing the integration architecture using the Web Services paradigm implied
using the following standards for systems integration (See Section 3.2 for a definition
and discussion of these standards.):

• Data would be communicated between systems in a standard XML format.
• SOAP would be used to send and receive XML documents.
• Aggregation interfaces specifications would be defined with WSDL.
• A registry of all system interfaces would be published using the UDDI.

The Web Services interfaces between the Global Order Management System and

the systems in “Division A” are illustrated in Figure 1, such as Provisioning, Trouble
Tickets, and Usage Statistics. Similar interfaces would be needed for all the
divisions.

Global Order

Management System

Provisioning -
Division A

SOAP

WSDL

Internal
UDDI

Registry

Trouble Tickets -
Division A

WSDL Usage Statistics -
Division A

WSDL

Figure 1. Global Telecom's Web Services Interfaces

3. Process Aggregation and Web Services

The previous section illustrates how Web Services can be used to facilitate data
integration and aggregation. However, to take Web Services a step further and enable
Process Aggregation, we need to have workflow capabilities layered on top of Web
Services interfaces. In this manner, Web Services plus workflow enable the
aggregation of business processes. That is, creating a new business process by
linking together existing business process components in a manner that is orchestrated
by a workflow manager.

To begin exploring the challenges posed by the Web Services paradigm for
integration, we introduce a concept we call Process Aggregation.

3.1 Process Aggregator Definition

A Process Aggregator is an entity that:
• Transparently collects and analyzes information from different data

sources;
• Resolves the semantic and contextual differences in the information and

services;
• Provides a single point of contact for managing a business process that

requires coordination across a variety of services / information sources.
(e.g., a multi-step workflow process)

It should be noted that almost any aggregator that accesses a source web site with a

CGI (or similar) program behind it generating HTML could be thought of as
aggregating processes. For example, Yodlee (www.yodlee.com) accesses account
balance lookup processes at the source sites of its members. However, we define
Process Aggregation to be the creation of a new business process through the
aggregation of component sub processes that comprise a multiple step workflow.

GT’s Order Management System, illustrated in Figure 1, is a good example of a
Process Aggregator. Below, we describe the workflow aspects that distinguish it as
an example of Process Aggregation.

3.2 Web Services Definition

The Web Services paradigm provides a new set of standards and technologies that
facilitate an organization’s ability to integrate internal heterogeneous systems (e.g.,
Enterprise Application Integration (EAI)) or integrate with business partners (e.g.,
Supply Chain Management and other Business-to-Business (B2B) type applications).
These types of systems are Process Aggregators.

For our purposes, we define a Web Service as an application interface that
conforms to specific standards in order to enable other applications to communicate
with it through that interface regardless of programming language, hardware platform,
or operating system. A Web Service interface complies with the following standards:

• XML (eXtensible Markup Language6) documents are used for data input
and output.

• HTTP (Hypertext Transfer Protocol7) or a Message Oriented Middleware
(MOM) product (e.g., IBM’s MQ Series) is the application protocol.

• SOAP (Simple Object Access Protocol8) is the standard specifying how
XML documents are exchanged over HTTP or MOM.

• WSDL (Web Services Description Language9) is used to provide a meta-
data description of the input and output parameters for the interface.

• UDDI (Universal Description, Discovery and Integration10) is used to
register the Web Service.

3.3 Process Aggregation using Web Services

Figure 2 illustrates a generic example of how Web Services standards are employed
for Process Aggregation. This is a generic version of Figure 1 where the box labeled
“Process Aggregator” is Global Telecom’s Order Management System. The
programmers developing this system need to integrate the Order Management

Systems from various divisions. They accomplish this task by defining standard
XML document types as needed (e.g., Order, Provisioning). These documents make
use of standard tags for data such as price and bandwidth.

Within each division, programmers develop a Web Service that can receive an
Order and return a Provisioning document. The interface for each division’s Web
Service is published using WSDL and registered in a UDDI Registry. The

6 www.w3.org/XML
7 www.w3.org/Protocols
8 www.w3.org/2000/xp
9 www.w3.org/TR/wsdl
10 www.uddi.org

Process Aggregator

Web
service #1

SOAP
(XML over

HTTP)

HTML
Source

WSDL

UDDI
Registry

Web
service #2

WSDL

Screen
Scraping

Figure 2. Process Aggregation with Web Services

programmers working on the Global Order Management System can use the UDDI
Registry to look up the Web Services that the divisions have made available. From
there, they can access the WSDL for each Web Service that specifies its inputs and
outputs. Some of the divisional Order Management Systems may be simple enough
that instead of implementing a Web Service interface, basic screen scraping off an
existing HTML interface is used.

3.4 Process Aggregator Architecture

In addition to data integration, a Process Aggregator combines services from a variety
of sources to create and manage a new business process. A standard technical
platform architecture is emerging for creating Process Aggregators, as illustrated in
Figure 3. This platform architecture, with some variations from vendor to vendor, is
used by a wide range of commercial products including Microsoft BizTalk Server11,
webMethods Integration Platform12, TIBCO ActiveEnterprise13, and IBM’s
WebSphere Business Integrator14.

Figure 3. Process Aggregator Platform

11 www.microsoft.com/biztalk/default.asp
12 www.webmethods.com/content/1,1107,webMethodsIntegrationPlatform,FF.html
13 www.tibco.com/products/enterprise.html
14 http://www-3.ibm.com/software/webservers/btobintegrator/

Connectors
(Synch)

Messaging
(Async /
MOM)

Web
Services
(Asynch /

HTTP)

Connectivity

Process Manager

- Event Handling
- Workflow Manager
- Transactions

Transformation
(Semantic, Contextual, and Syntactic)

Analytics

The Process Aggregation application built on such a platform is referred to as EAI
if it involves aggregating internal processes (as in our GT example) or B2B if it
involves aggregating business processes from different companies.

3.4.1 Process Manager
A Process Manager component sits on top of the technology stack and manages the
business process that is created by aggregating a variety of sub-processes. This
component handles events (e.g., request for bid), workflow (e.g., forwards bids to
management for approval), and transactions (e.g., issues purchase orders for services

Figure 4. Process Management Workflow

based on bids). Note that this requires an embedded “workflow manager” as
illustrated in Figure 4.

The steps in this workflow are:

1. Process Manager sends a SOAP message to the Bidding Web Service
containing a widget order. The Bidding Web Service could be an
independent Internet marketplace or an internal electronic marketplace
that communicates with the corporation’s widget suppliers.

2. The Bidding Web Services sends a SOAP message back to the Process
Manager containing the bids from each supplier who decided to place a
bid.

3. The Process Manager then send these bids, as a SOAP message via the
Approval Web Service, to a workflow system that presents the bids to
management and enables management to electronically approve the
winning bid.

Process Manager

Bidding Web
Service

Bidder #1
Web Service

Bidder #2
Web Service

Bidder #3
Web Service

1 Reqest
Bids

2
Bids
come
back

Approval Web
Service

Management
Approval
Workflow
System

3
Send

bids for
review 4

Approved
bid

returned
Order System
Web Service

Order
Management

System

5
Purchase Order
sent to winning

bidder

Winning BidderInternal SystemVarious Suppliers

4. The winning bid is then sent back to the Process Manager, as a SOAP
message via the Approval Web Service.

5. The Process Manager generates a Purchase Order and sends it to the
winning bidder as a SOAP message to their Order Management System’s
Web Service.

3.4.2 Analytics
The Analytics component extracts data elements from the XML documents
exchanged with the Web Services and puts them into a data structure (e.g., relational
database) that can be accessed by the Process Management component for managing
the business process. Analytics also performs analysis that may be useful to decision
making that is part of the business process. For example, the Analytics component
might run a model of projected end customer usage of that partner’s services to get a
projected cost for doing business with that partner.

3.4.3 Transformation
The Transformation component transforms the incoming XML into a standard format
with a shared semantics and syntax. For example, if bids come in local currencies,
the Transformation component will standardize on U.S. dollars using a pre-
determined exchange rate.

3.4.4 Connectivity
The Connectivity component handles the Web Services function calls using the
standards discussed above (e.g., SOAP, XML, WSDL) over either HTTP or a MOM
infrastructure. In addition, a Process Aggregator would typically provide a
synchronous method for exchanging information with the processes being aggregated
and where transactions need to be supported (e.g., rollback, commit). Such
synchronous capabilities would be provided by a connector interface to the
appropriate Enterprise Information System (EIS) (e.g., SAP, PeopleSoft). Connectors
may be implemented using standards such as Java’s J2EE Connector Architecture15 or
proprietary products.

3.5 Ford Motor Company’s e-Hub16

One real world example of how this Process Aggregation Architecture is used in
practice is Ford’s e-Hub initiative. e-Hub will provide Ford with both EAI and B2B
integration capabilities. Currently, e-Hub is being used for collaboration with dealers
and suppliers, as well as supply chain integration. Ford Motor uses Microsoft
BizTalk Server as the technology platform for the e-Hub Process Aggregation
architecture.

15 http://java.sun.com/j2ee/connector/index.html
16 http://biz.yahoo.com/prnews/010726/sfth060.html

3.6 A Prominent Systems Development Paradigm of the Future?

Process Aggregation using Web Services may become a prominent systems
development framework for large corporations in the near future. The major problem
corporations face in using EIS software is that its “one size fits all” approach to
business process automation leaves customers with little flexibility to adapt the
software to their business processes as the evolve, or automate new business
processes for competitive advantage.

Process Aggregation enables corporate business process to be more flexible and
respond to changing business needs. This is accomplished by modularizing systems
functionality into Web Services and then arranging and re-arranging the workflow
between modules to adapt to changing business requirements. To satisfy the need for
such Process Aggregation, many major software vendors are now offering technology
platforms that can be used to implement the architecture illustrated in Figure 3.
Examples include Microsoft’s BizTalk17, IBM’s WebSphere Business Integrator18,
and BEA Systems’ WebLogic Integrator19.

4 What is New About Process Aggregation with Web Services?

Process Aggregation has been going on long before Web Services standards emerged.
As mentioned previously, the aggregation of any HTML or XML data that is
generated by a program (e.g., CGI), rather than being static, is doing some form of
Process Aggregation. In this respect, there is really a continuum from aggregators
that are clearly “information aggregators” (e.g., Yahoo), to those that are clearly
Process Aggregators (e.g., A B2B system for supply chain management).

What is newly relevant to the Process Aggregation end of the continuum is the
advent of universally accepted standards for Web Services. As discussed in Section
3.6, this will have a profound impact on aggregation and on systems development in
general.

4.1 Comparison with Electronic Data Interchange (EDI)

As a forerunner to Web Services, EDI provided standard protocols and syntax, but
required the installation and maintenance of a network linking buyers and suppliers.
Today, nearly all businesses have Internet access, and Web Services standards
promise to enable much broader business-to-business interaction than EDI.

17 www.microsoft.com/biztalk/default.asp
18 http://www-4.ibm.com/software/webservers/btobintegrator/index.html
19 www.bea.com/products/weblogic/integration

4.2 Comparison with Distributed Object Paradigms (e.g., CORBA)

Distributed object paradigms have also been promoted as a method of easing
application integration and promoting “object re-use” (i.e., reusing modules of code).
Examples include Common Object Request Broker Architecture (CORBA),
Microsoft’s Distributed Component Object Model (DCOM) and .NET platform, and
Java’s J2EE framework.

There are many similarities between these initiatives and Web Services. Most
prominent is the reliance on standards to facilitate communication between
applications. However, the problem here is that most organizations have very
heterogeneous sets of applications that don’t adhere to one distributed object
paradigm. Applications can be “wrapped” with a distributed object interface, but this
is often costly and time consuming. Additionally, for B2B integration across
enterprises, these models are less useful because (i) the communication protocols
don’t work through firewalls; and (ii) different enterprises use different object
models.

Web Services represent a step forward because, at least for the moment, the
software industry seems to be supporting the same set of standards. Secondly, the
SOAP protocol for exchanging XML messages is not blocked by firewalls. Thirdly,
Web Services are easier to implement than building distributed object wrappers
around existing applications. In fact, most software vendors are planning to provide
Web Services interfaces into their products out of the box, along with tool kits for
further development of Web Services tailored to a particular customer’s needs.

Both the .NET and J2EE paradigms now include extensive functionality to support
Web Services.

4.3 New Software Usage Paradigms

Web Services has the potential to change the manner in which software is most
commonly purchased and used today. One example of this would be the potential to
pay for software on a per-use basis. For example, consider a Web Service for credit
card authorization. Such functionality could be offered on a subscription or per-use
basis by organizations operating web sites that need to process credit card transactions
and don’t want to build or buy software for that purpose.

Another example would be the ability of corporations to more easily implement a
“best of breed” strategy when implementing EIS solutions. Since Siebel and SAP
now have Web Services interfaces, perhaps a company could easily integrate Order
Processing from SAP with Customer Service from Siebel and pay each vendor only
for the functionality that they use.

Of course, this would require the software vendors to modularize their products so
that they would work interchangeably with modules from other vendors. This is not
likely considering that large EIS vendors, like SAP, want to sell a complete package.
However, Web Services may provide an opportunity for new, third party, software
vendors to provide such modularized products that work well with the existing
monolithic EIS systems.

Finally, we may reach a point where potential software users are able to search a
UDDI directory for Web Services components and assemble their own custom
software tools from the aggregation of existing functionality. A Logistics
Management System, for example, might be assembled by aggregating route
information from one Web Service with a route optimization algorithm from another
Web Service.

5 Challenges and Potential Research Directions

Today’s Web Services standards specify common protocols for the exchange of
information between systems. Other efforts, like ebXML (www.ebxml.com), target
the standardization of syntax and protocols to standardize common business
transactions (e.g., invoicing). However, there are still many significant challenges
that remain in order for the Web Services paradigm to meet the integration
architecture requirements of many Process Aggregators. These challenges are
summarized in the table below and explained in the following sub-sections.

Challenge Brief Description
Semantics Different Web Services will have different meanings

attached to data values that may have the same, standard,
name in each service. The challenge is to mediate between
these different contexts.

Modularization of
Business Processes

Existing EIS solutions (e.g., SAP) are monolithic and not
easy to break into modular pieces of functionality to
facilitate “best of breed” computing.

Security and Trusted
Intermediaries

What methods will be most effective for ensuring that only
authorized users can access a Web Service? Conversely,
how does a user ensure that a Web Service does not misuse
information that is exchanged during interaction?

Quality and Source
Selection

The challenge is to ensure that a Web Service is providing
accurate, complete, consistent, and correct information.
Given the potential for multiple Web Services providing
similar capabilities, how does one select the most
appropriate source?

Licensing and Payment
Mechanisms

How will users pay for access to Web Services?

Development Tools What kind of tools (e.g., modeling, programming, search)
will be needed to make Web Services development
efficient?

5.1 Semantics

Web Services Description Language (WSDL) is used to specify the XML syntax
required to communicate with a Web Service. However, problems can still arise
related to inconsistent meanings, or semantics.

Consider, for example, a Web Service provided by each of Global Telecom’s
divisions to return bandwidth data when queried about a particular customer’s
network connection between two points. One division’s Web Service may represent
bandwidth in bits per second, while another may use megabits per second. This
transformation process has not been standardized within the Web Services paradigm
and is often one of the most difficult integration challenges to overcome.

The bandwidth problem can be solved by defining a new type, called “mbs” for
“megabits per second,” and then using this type for the variable Bandwidth.
Assuming that the programmers writing this Web Service in each division implement
the WSDL specification correctly, then each would convert their units for bandwidth
into megabits per second.

Some semantic problems, like the bandwidth units, can be overcome by specifying
unique types. However, this is not always possible or practical. Consider a Web
Service provided by each division that requires a “customer number” to retrieve local
usage information for corporate billing purposes.

Commonly, organizations like GT do not have standard customer numbers for their
clients. For example, each local system that has been providing network services to
local divisions of WC probably has its own customer number and other information
(e.g., address, spelling of name). This is a challenge because the Billing System, for
example, needs to aggregate usage data across all of WC and has no standard context
(e.g., customer number) for accomplishing that. Often called the Corporate
Household or Corporate Family Structure problem[16][17], the issue is that GT has
been doing business with local branches and subsidiaries of WC for years using a
variety of customer numbers. Importantly, even XML schema standardization efforts
like ebXML do not solve this Corporate Household problem.

5.2 Context Mediation

One solution may be to introduce Context Mediation into the Web Services paradigm.
In the GT example, a Context Mediation Service would identify and resolve potential
semantic conflicts between the user and provider of a Web Service.

An example of such a Context Mediation framework is provided by MIT’s
COntext Interchange (COIN) project. [2][7][8][9][10][11]. Following the COIN
model, with the Web Services framework there would be standards to supply:

• A Domain Model to define rich types (e.g., customer number).
• Elevation Axioms to apply the Domain Model to each Web Service and

define integrity constraints specifying general properties of the Web
Service.

• Context Definitions to define the different interpretations of types in each
Web Service (e.g., CustomerName might be “division level” or “corporate
level”).

The W3C is doing similar work in the context of its “Semantic Web” initiatives
(www.w3.org/2001/sw/) that could be leveraged to provide standards for this type
of Context Mediation. For example, a Domain Model standard could be defined as a
subset of XML Schema (www.w3.org/XML/Schema). Alternatively, Context
Mediation metadata for a web service could be stored using UDDI tModels
(www.uddi.org/pubs/DataStructure-V2.00-Open-20010608.pdf). Currently,
tModels are used primarily for storing taxonomy data (e.g., NAICS industry codes),
but the specification is flexible enough to be used for storing the rich metadata
required for context mediation. Of course, the usefulness of storing context mediation
metadata in tModels would depend on the development of standards for the metadata
itself.

Another approach to adapting the COIN model for Context Mediation to Web
Services is suggested by the work being done on RuleML. [14][15]. RuleML is XML
syntax for rule knowledge representation. It is designed to be inter-operable with
commercially important families of rule systems such as SQL, Prolog, Production
rules, and Event-Condition-Action rules (ECA). For example, the Elevation Axioms
used by COIN to mediate different contexts could be stored in RuleML in a Web
Service’s WSDL, or in a local UDDI directory.

If there were clear standards for these components of Context Mediation, then the
vendors providing Process Aggregation tools, with architectures like that exhibited in
Figure 3, could build Context Mediation capabilities into their products just as they
have built in support for Web Services standards like SOAP, WSDL, and UDDI.

5.3 Modularization of Business Processes

It may prove very difficult to modularize the business processes, as automated in EIS
packages like SAP and Siebel. Apart from the programming challenges related to
adding Web Services features to these products, there are ontological challenges to
modularization.

For example, at GT, many of the divisions have Order Management Systems that
automatically generate a new customer in the local Billing System each time a new
order is provisioned. The databases behind these Order Management Systems often
enforce referential integrity between orders and the customer database in the Billing
System. So, to avoid rewriting a lot of code in order to aggregate these local systems,
the Enterprise Order Management System will need to add customer information to
each of the local Billing Systems. But this customer information will also reside in
the Enterprise Billing System, so we now need to maintain consistency across all
these systems, and modify the local Billing System to not bill the local division of
WC directly, but to roll-up local usage from WC to the Enterprise Billing System.

5.4 Security and Trusted Intermediaries

Publishers of Web Services on the Internet will need a security mechanism to control
who is able to access their services. For example, access to a person’s credit history
should only be available to those with the legal right to obtain that information.

There are several ways that standards could be created, and infrastructure

developed to build security into the Web Services paradigm. One possibility is
simple password protection. In order to use a particular Web Service one would have
to register and receive a user name and password.

Another possibility is to use Public Key Encryption as the basis for a security
standard. In this model, anyone would be able to access a Web Service, but the XML
documents returned by the service would be encrypted and only authorized users,
with the proper key would be able to de-crypt them.

Ensuring the security of a Web Services user is another important consideration.
For example, suppose that a company created a Web Service that provided an
artificial intelligence based disease diagnosis. For a fee, a customer (or the
information systems at a customer’s hospital) could supply medical history and
symptoms and receive back diagnostic information. Such a Web Service might be
used by doctors to confirm diagnoses, insurance companies to validate treatments
prescribed by doctors, and individual patients themselves. To use such a system, a
patient’s medical history must be supplied to the Web Service. Clearly, the patient
would want to ensure the confidentiality of that information, and also ensure that the
company providing the Web Service did not even have access to the information
provided.

In this scenario, it might make sense for the user of a Web Service to work through
a “trusted intermediary” - an entity that could access Web Services on behalf of the
customer and ensure that confidential information is not revealed to the operator of
the Web Service.

5.5 Quality and “Source Selection”

Another important issue in the development of the Web Services paradigm is
information quality. How does a customer know, for example, that a linear equation
solving Web Service is providing correct answers?

Solving this problem (i.e., ensuring the accuracy, consistency, completeness, etc.
of results obtained from a Web Service) is difficult. One possibility is the emergence
of Web Services auditors that give their seal of approval to individual Web Services
much the way that Public Accounting firms audit a company’s financial results.
Along these lines, the W3C has recently announced the creation of a Quality
Assurance (QA) Activity (www.w3.org/QA/). Perhaps some of these issues will be
addressed in that forum.

5.6 Licensing and Payment Mechanisms

Suppose you were developing a Financial Advisor site. To offer a complete set of
services to customers, you might want to access Web Services for things like stock
quotes, yield curve calculations, risk-arbitrage models, etc. One payment scenario
would involve you signing licensing agreements with each Web Service – perhaps
paying a monthly fee.

Another approach could be a “per use” charge, so that you were charged a small
amount each time you accessed the Web Service. The market for Web Services
would be helped by the existence of a standard “per use” payment services. If both
the Web Services and the Financial Advisor aggregator were members, then the
charges would be computed and handled automatically. The service would act as an
intermediary, providing monthly statements to the aggregator, collecting fees, and
sending payments to the Web Services. One commercial platform that has the
potential to become such a service is Microsoft Passport20.

5.7 Development Tools for Process Aggregation

To build a system using Process Aggregation and the Web Services paradigm,
developers need tools to locate the Web Services they need to aggregate into their
application.

To enable this kind of search, first a language is needed to describe the process that
a Web Service is needed for. Perhaps the Unified Modeling Language (UML) could
be adapted to this purpose to create a Unified Modeling Language for Web Services
(UMLWS).

This is another area where knowledge representation efforts such as RuleML
[14][15] could be helpful. For example, the use of a particular Web Service is
probably subject to a number of constraints that may or may not make it suitable for a
particular task. Going back to our example, suppose that each division of GT has a
“minimum order size” expressed in terms of bandwidth or length of contract. These
rules could be expressed as RuleML and stored in the WSDL so that a developer
could determine whether or not the Order Management System’s Web Service at a
particular division can be used for a particular order or not.

Once standards such as UMLWS and RuleML are devised and adopted, then Web
Services Search Engines could be developed that take UMLWS and RuleML as input
and search a UDDI directory for Web Services that provide the necessary processes.

6 Conclusion

The infrastructure is falling in place to enable great efficiencies in the integration
and aggregation of business processes, both internally within an organization (EAI)
and externally, across organizations (B2B). The ubiquity of the Internet, along with
standardization on TCP/IP and HTTP create near universal connectivity. But
connectivity is only the first step toward integration. Today, the Web Services
paradigm promises to standardize the syntax and protocols used for communication
between applications. This is another important step that promises to enable Process
Aggregation. However, it is important to remember that many challenges lie ahead.
As the problems of syntax and protocols for integration get resolved, we will find
ourselves facing the additional challenges of semantics, modularization of business
process, security, and other issues discussed in this paper. It will be interesting to see

20 www.passport.com

how work that has been done on Context Mediation, the Semantic Web, and other
areas can be applied to meet these challenges.

References

[1] Madnick, S (1999). “Metadata Jones and the Tower of Babel: The Challenge of Large-
Scale Semantic Heterogeneity”, Proc. IEEE Meta-Data Conf., April 1999.

[2] Madnick, S. (2001). “The Misguided Silver Bullet: What XML will and will NOT do
to help Information Integration”, Proceedings of the Third International Conference on
Information Integration and Web-based Applications and Services (IIWAS2001),
September 2001.

[3] Madnick, S., Siegel, M. Frontini, M., Khemka, S., Chan, S., and Pan, H., “Surviving
and Thriving in the New World of Web Aggregators”, MIT Sloan Working Paper
#4138, October 2000 [CISL #00-07].

[4] Bressan, S., Goh, C., Levina, S., Madnick, S., Shah, A., and Siegel, M., “Context
Knowledge Representation and Reasoning in the Context Interchange System”, Applied
Intelligence (13:2), Sept. 2000, pp. 165-179.

[5] Hackathorn, R (1999). Web Farming for the Data Warehouse, Morgan Kaufmann
Publishers.

[6] Goh, C. (1996). Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems, PhD Thesis, MIT, June 1996.

[7] Goh, C., Bressan, S., Madnick, S., and Siegel, M. (1999). “Context Interchange: New
Features and Formalisms for the Intelligent Integration of Information,” ACM
Transactions on Office Information Systems, July 1999.

[8] Goh, C., Bressan, S., Levina, S., Madnick, S., Shah, A., and Siegel, M. (2000). “Context
Knowledge Representation and Reasoning in the Context of Applied Intelligence,” The
International Journal of Artificial Intelligence, Neural Networks, and Complete
Problem-Solving Technologies, Volume 12, Number 2, Sept. 2000, pp. 165-179.

[9] Goh, C., Madnick, S., and Siegel, M. (1994). “Context Interchange: Overcoming the
Challenges of Large-Scale Interoperable Database Systems in a Dynamic
Environment,” Proceedings of the Third International Conference on Information and
Knowledge Management, pages 337-346, Gaithersburgh MD.

[10] Siegel, M. and Madnick, S. (1991) “Context Interchange: Sharing the Meaning of
Data,” SIGMOD RECORD, Vol. 20, No. 4, December pp. 77-78.

[11] Siegel, M. and Madnick, S. (1991) “A Metadata Approach to Solving Semantic
Conflicts,” Proceedings of the 17th International Conference on Very Large Data Bases,
pages 133-145.

[12] Hansen, M., “Changing Terrain: Open middleware standards are redefining EAI and
B2B integration”, Intelligent Enterprise, August 10, 2001.

[13] Moulton, A., Bressan, S., Madnick, S. and Siegel, M., “An Active Conceptual Model
for Fixed Income Securities Analysis for Multiple Financial Institutions,” Proc. ER
1998, pp. 407-420.

[14] Grosof, B. and Labrou, Y., “An Approach to using XML and a Rule-based Content
Language with an Agent Communication Language.” In Frank Dignum and Mark
Greaves, editors, Issues in Agent Communication. Springer-Verlag, 2000.

[15] Grosof, B., “Standardizing XML Rules: Preliminary Outline of Invited Talk”,
Proceedings of the IJCAI-01 Workshop on E-business and the Intelligent Web, edited by
Alun Preece, August 5, 2001.

[16] Chen, X., Funk, J., Madnick, S., and Wang, R., “Corporate Household Data: Research
Directions”, Proceedings of the Americans Conference on Information Systems
(AMCIS, Boston), August 2001 [SWP #4166, CISL WP #01-03, TDQM WP#2001-08].

[17] Madnick, S., Wang, R., Dravis, F., and Chen, X., “Improving the Quality of Corporate
Household Data: Current Practices and Research Directions”, Proceedings of the Sixth
International Conference on Information Quality (IQ2001, Cambridge), November
2001, pp. 92-104 [CISL #01-10].

