Component-Based Deployment and M anagement of
Servicesin Active Networks

Marcin Solarski', Matthias Bossardt?, and Thomas Becker!

1 Fraunhofer Institute for Open Communication Systems FOKUS
Berlin, Germany
{sol ar ski , becker }@ okus. f hg. de
2 Computer Engineering and Networks Laboratory
Swiss Federal Institute of Technology, ETH
Ziirich, Switzerland
bossardt @i k. ee. et hz. ch

Abstract This paperE] describes a holistic approach towards the deployment and
runtime management of services on active network nodes taken by the FAIN
project. Both the underlying service model and the architectures supporting de-
ployment and management are component oriented. The separation of service
meta-information and implementation code allows for a very flexible way of ser-
vice deployment management as it facilitates selective code distribution, fine-
grained installation and instantiation. Active services are composed from a set
of service components that can be selected on demand at deployment time and
installed in any combination of the data, control, and management planes which
enables realisation of arbitrary active services.

1 Introduction

Since the mid nineteen-nineties many efforts have been made to develop Active Net-
works technology [1] to enable more flexibility in provisioning services in networks.
By defining an open environment on network nodes this technology allows to rapidly
deploy new services which otherwise may need a long time and adaption of hardware.

There are two major approaches to Active Networks: on the one hand active packets
(capsules) transmitting code along the data path which will be executed on the appro-
priate nodes and on the other hand a separated transmission of control and data packets.
Whereas the first approach is suitable for deploying simple data path services (like new
forwarding rules) with low latency, the latter one is more applicable for high-level,
application-oriented services.

Deploying and managing high-level services requires an appropriate service model.
While fully-fledged component-based service models are an integral part of many en-
terprise computing architectures (e.g. Enterprise JAVA Beans, CORBA Component
Model, Microsoft’s .NET), it is not the case in many approaches developed by the active
networking community.

! This research is funded by the European Commission (IST-1999-10561), as well as by the
Swiss Federal Institute of Technology (ETH) Ziirich, and Swiss BBW (grant number 99.0533).

J. Sterbenz et al. (Eds.): IWAN 2002, LNCS 2546, pp. 87-98] 2002.
© Springer-Verlag Berlin Heidelberg 2002

88 Marcin Solarski, Matthias Bossardt, and Thomas Becker

runtime deployment
management architecture
architecture component
oriented

service
model

Fig. 1. Component oriented service model and supporting architectures

In this paper we present a component-based service model together with deploy-
ment and runtime management architectures based on this model (see figure [[). While
the service model defines how services are described by potential recursive composi-
tions of service components the deployment architecture defines how and when service
components are transfered to active nodes and installed upon a service request. The
runtime management architecture deals with the installation of serivce components in
execution environments and the management of component instances.

The mentioned architectures have been implemented during the still ongoing FAIN
project and used in the project test bed.

Section2l describes the service model in more detail. Sections 3]presents the design
and implementation of the runtime management architecture while section Ml presents
the deployment architecture together with an example. In section Bl we show some re-
lated work and in section[dl we draw a conclusion and give an outlook on future work.

2 Service Modd

This section describes the FAIN service model. The basic concept of the service model
is the service component, a piece of self-contained software that is the smallest unit of
deployment and management. A serviceis a unit of functionality that a service provider
wants to offer to its customers. This functionality is realised by a combination of one or
more service components.

The composition pattern is hierarchical in that service components may be recur-
sively composed of sub-components. The goal of this approach is to enable flexible
deployment and management of services at a suitable level of granularity, as well as to
deal with services running in multiple execution environments with varied capabilities
and underlying software technologies on possibly heterogeneous active nodes.

From the deployment perspective, a service component consists of a service de-
scriptor and an optional reference to the service code stored in a file called code mod-
ule. There are three classes of service components that differ in the terms of whether
they consist of some service subcomponents and whether they directly refer to a code
module: (Smple) Implementation — a service component without any dependencies.
It contains just a reference to a code module; Compound Implementation — a service
component consisting of subcomponents and having a reference to a code module; and
Abstract Implementation — a service component consisting of subcomponents and hav-
ing no reference to a code module.

From the runtime per spective a component is a unit of instantiation and activation.
Runtime instances of components are identified by a unique name and are owned by

Component-Based Deployment and Management of Services in Active Networks 89

an identity defined by its name and credentials. Assigning an owner to each component
instance allows to do access control and accounting based on identities. The configura-
tion of a component instance is defined by a set of properties. The connections to the
outside are described by the component’s ports where components can offer arbitrary
ports in addition to the basic ones, e.g. a bandwidth manager will offer an interface for
reserving bandwidth in addition to the initial interface.

Components are accessed and interconnected by ports. Ports can be used for ex-
changing information or to model this exchange. Ports are also useful to express de-
pendencies among components. A port has a name valid in the context of the holding
component as well as a reference to the component itself. A port is described by a di-
rection, an address (i.e. the endpoint for data exchange like an IP address, a memory
address, an IOR, etc.), a format (i.e. the protocol used for data exchange like IP, ATM,
IIOP, HTTP, etc.), and an optional type used for typed ports (e.g. a CORBA interface
repository ID). The term “port” is used here to generalise from the notion of “interface”
used in distributed object technology.

Each component offers a special port, namely its iComponentlnitial interface. This
interface is used for the initial access of a client to a component. Using this interface
a client can retrieve the references to the other ports (and interfaces) supported by the
component. In order to get access to a port of the component the client has to au-
thenticate itself at this interface passing its credentials. The result is a reference to the
requested specific interface tailored to the calling client. Components can offer arbitrary
ports in addition to the basic ones, e.g. a bandwidth manager will offer an interface for
reserving bandwidth in addition to the initial interface.

The management of components has two aspects. The component life cycle is man-
aged using component managers as it is described in section Bl The other aspect is
called component configuration and is a process of setting up or tuning the component
behavior that may take place after the component is instantiated. The configuration of
a component is described by properties as pairs of names and values. Properties can
be used to define a component’s behavior, e.g. a property may define a resource limit
for a particular user or may restrict the access and usage of a component’s interface.
Interested clients can register for getting notified when particular properties change.

3 Node Management Architecture

This section describes the design and implementation of the runtime management ar-
chitecture as it was developed during the FAIN project [l13]. Since this architecture is
based on the component-orineted service model its basic abstraction is as well the no-
tion of components. Before presenting the desing in more detail a short introduction to
the runtime environment for active services will be given.

The places where service code is executed are called execution environments. While
this is common to all active network approaches the FAIN runtime architecture defines
additionally the notion of virtual environments. Virtual environments (VEs) were in-
troduced to abstract from the specifica of execution environments (EEs), for example,
there are EEs implemented in hardware offering high performance, other EEs are im-
plemented in interpreted languages focusing on flexibility.

90 Marcin Solarski, Matthias Bossardt, and Thomas Becker

A VE is owned by a service provider and may group several EEs assigned to the
particular service provider. Thus, a VE is the “frontdoor” to the services running in the
execution environment(s) of a service provider and used for their management. There
is one special privileged VE owned by the node provider which holds the basic node
services, like EE management, VE management, bandwidth management, etc. The priv-
iledged is the main entry poitn for an active node.

When a service provider owns multiple VEs spread over several network nodes the
VEs form a virtual active network. In order to identify which VEs belong to a virtual
network they are tagged with a unique virtual network identifier.

3.1 Design

To support the component-based service model the design of the runtime management
architecture also uses the component as the main abstraction. From the management
viewpoint a component instance represents two aspects: firstly the functional aspect
where the component is seen as a service instance and secondly the non-functional
aspect where the component is seen as a resource.

The management architecture utilizes a special kind of component ports, namely
interfaces (as known from CORBA [10]), and defines a basic set of interfaces which
comprise the management API of the active node. They are used for example by the
active service provisioning (ASP) module (see section F.1)) to install services on the
node and later to create instances. Service instances use the same API to discover other
services or resources. Because of the reflective nature of this API service instances can
retrieve and modify metainformation about themselves.

The three basic types of interfaces used for the runtime management are i Template-
Manager, iComponentManager, and iComponentInitial. The runtime management al-
lows adding new ports to components so that they can publish their specific functional-
ity. This allows for a very flexible way to construct services from basic components by
combining and enhancing the already provided functionality.

In the following the abstractions defined by the runtime anagement will be described
in more detail.

Template Manager. A template manager manages templates (e.g. JAVA classes, object
files, etc.) from which component instances can be created. Management comprises the
installation, removal, and updating of templates. This operations are available at the
template manager’s i TemplateManager interface. Template managers are implemented
by VEs and EEs as the environments are the places where service components are
installed. The active service provisioning (ASP) module will use the template manager
of the priviledged VE to install a new template on the node and pass a description of
the template.

A template description includes all the information which is necessary to create
component instances. However, instead of having the template manager to deal with
different instantiation methods the template description contains a factory for instances,
called component manager. Further the template description includes the name and ver-
sion of the template, the VE and EE identifiers, the path to the code archive of the

Component-Based Deployment and Management of Services in Active Networks 91

template, and optional additional properties defining template specific features. The VE
and EE identifiers are used to determine the service provider for whom to install the
template and the runtime environment for component instances (e.g. a JAVA virtual
machine).

Component Manager. A component manager is used to manage instances of compo-
nents associated to a specific template, thus it is acting as a component factory. Manag-
ing comprises the creation, activation, deactivation, discovery, deletion, and updating of
instances. This operations are available at the component manager’s iComponentMan-
ager interface.

The parameters for the creation of a component are specific to the type managed
by the component manager (as defined by the respective template) and the result is the
component’s iComponentlnitial interface. The component manager uses the parameters
to check the possibility to create a new instance, i.e. the availability of the required
resources.

Specific Component Managers. While template managers are only specific to the EE
in which templates should be eventually installed the component managers are even
more specific. For each type of components there needs to be a component manager.
When a particular type of resource is represented by a type of component (e.g. a process
represented by a component) there has to be the appropriate resource manager (e.g.
a process manager). In order to define a manager one should specify the additional
interfaces and operations if any, the properties supported for resource creation, and the
dimensions and units supported for monitoring resources if applicable.

There are special managers for managing the basic services provided by an active
node, namely security management, traffic management, packet demultiplexing, and
management of execution environments as well as virtual environments.

Example. Figure[2depicts an example snapshot of an active node. From left to right it
shows the priviledged VE with the attached priviledged EE supporting i TemplateMan-
ager (iTM) interfaces. Inside the priviledged EE there are installed three templates with
respective component managers supporting i ComponentManager (iCM) interfaces: VE
management, EE management, and management of an arbitrary resource “z”. The VE
manager created one VE, the EE manager created two EEs, and the arbitrary resource
manager one resource instance. Both EEs and the resource instance are attached to the
VE. Further, it can be seen that in EE1 there is installed a template “x” and in EE2 a

[TEsT)

template “y”. From both templates an instance was created.

3.2 Implementation

To support the management of services and resources on an active node a framework
was implemented comprising base classes for components, component managers, and
template managers. The implementation was carried out in JAVA with a strong support
for CORBA interfaces as communication ports (although components can implement

92 Marcin Solarski, Matthias Bossardt, and Thomas Becker

\ holds
iT™ *
ins[alled
iT™

v

@— -holds <=
J
iT™

NI
is@ isy@

Fig. 2. Example snapshot of components on active node (iTM = iTemplateManager,
iCM = iComponentManager, iSx = interface of service “x”, iSy = interface of service

[T]

y”, iRz = interface of resource “z”)

whatever type of port is most appropriate). This framework facilitates the implemen-
tation of JAVA based services as well as services based on different technology by
creating wrapping components.

Using the framework there were implemented a collection of basic services to sup-
port other services which would be deployed to the node dynamically. Those basic
services live in the node provider’s privileged execution environment and are thus able
to access operating system resources. Other services living in the service providers’ en-
vironments can use the functionality provided by the basic services after successfully
accessing their interfaces.

4 Service Deployment Architecture

Service deployment is considered in this paper a process of making a service available
in the active network to the service user. It involves determining the target environment,
identifying the service components needed, mapping them to the target environment,
fetching the code, as well as installing and activating service components in their target
environments.

This section describes the FAIN service deployment architecture called Active Ser-
vice Provisioning (ASP) system. The system is defined by its main functionalities in
section @.1] The design of the ASP system, including the architectural components and
their interrelationship is the contents of section B.2] Finally, the operation of the ASP
system is explained in a concrete deployment scenario for an example transcoder ser-
vice in section B3l

Component-Based Deployment and Management of Services in Active Networks 93

4.1 Functionality of the Active Service Provisioning System

In this section, the main functionality of the Active Service Provisioning system is
described. The main actors communicating with the ASP system are:

Service Provider, or SP for short, composes services that include active components
and deploys these components in the network via the Active Service Provisioning,
and offers the resulting service to Consumers.

Active Network Service Provider, or ANSP for short, provides facilities for the de-
ployment and operation of the active components into the network. Such facilities
come in the form of an active middleware, support of new technologies etc.

The ANSP owns an active network offering one or more environments where active
code from Service Providers can run.

These roles are described in the FAIN Enterprise Model in [[12] in more detail. The
main use cases of the ASP system are:

Releasing a service. The Service Provider who decides to offer his service in the
active network has to release it in the active network. The service is released by making
the service meta-information and service code modules available to the ASP system.

Deploying a service. After the service is released in the network, the Service Provider
may want to deploy his service so that it can be used by a given service user. It means
finding a target environment that is most suitable for the given user, determining a map-
ping of the service components to the available EEs of the target environment, down-
loading the appropriate code modules, and finally installing and activating them.

Removing a service. The Service Provider may request to remove a deployed ser-
vice from the environment it was deployed in. The ASP identifies the installed service
components and removes them from the EEs of the target environment.

Withdrawing a service. A service released in the active network may be withdrawn
so that is is not available to be deployed any more. The ASP removes the service metain-
formation and discards the service code modules.

4.2 Design

The design of the ASP system follows a two tier approach. We distinguish between net-
work and node level ASP system. The network level functionality consists of metain-
formation and code module management, as well as the selection of nodes that are to
execute part of the service logic. On the node level, necessary service components are
identified, and dependencies are resolved. What follows is a more detailed description
of the ASP design, and how the functionality presented in section B.Tlis achieved by our
implementation.

Service Descriptor. The service descriptor supports a service model as described in
section 2] The first part of the service descriptor holds information about the developer
or provider and the functionality of the corresponding service component. The second
part is dependent on the class (cf. section) of service component described. For a
simple implementation this part contains a reference to a code module and identifies

94 Marcin Solarski, Matthias Bossardt, and Thomas Becker

the target environment where the code module is to be installed. It further contains EE-
specific information, which is used to perform EE-specific part of deployment process.
The service descriptor of an abstract implementation holds information about required
subcomponents and how they are to be bound to each other in order to perform the
expected functionality. Finally, a compound implementation is a mixture of the two
classes above, and hence contains both sets of information. The service descriptor is
implemented in XML, which proved to be a very suitable technology for the task at
hand. Furthermore, we developed an XML Schema to verify the structure and correct
syntax of service descriptors.

Service Local
Registry EpEEE Service
Registry

Node ASP

, Network ASP i | JavaEE Node

Servi é;e ! Cr— | Management

Provider : xcoder = Framework
‘ Service Provider ‘ Privileged VE
: VE |

Active Node

Fig. 3. ASP interaction when deploying an example service

Network Level ASP Design. The network level ASP system consists of three compo-
nents depicted in figure B} Network ASP manager, Service Registry and Service Repos-
itory.

The Network ASP Manager serves as an access component to the ASP system. In
order to initiate the deployment of an particular service, a Service Provider contacts the
Network ASP Manager and requests a service to be deployed as specified by the service
descriptor.

The Service Registry is used to manage service descriptors. Service descriptors
are stored on it, when a service component is released in the network. Network ASP
Manager and the Service Creation Engine may contact the Service Registry to fetch
service descriptors.

The Service Repository is a server for code modules. A code module is stored
on the Service Repository, when a service descriptor referencing the particular code
module is released in the network. The Code Manager, which is part of the node level
ASP system, may fetch code modules from the Service Repository.

Node Level ASP Design. On the node level, the following components make up the
ASP system as shown in the node ASP block of figure Bl Node ASP manager, Service
creation engine and Code Manager.

Component-Based Deployment and Management of Services in Active Networks 95

The Node ASP Manager is the peer component to the network ASP manager on
the node level. The network ASP manager communicates with the node ASP manager
in order to request the deployment, upgrading and removal of service components.

The Service Creation Engine (SCE) selects appropriate code modules to be in-
stalled on the node in order to perform the requested service functionality. The service
creation engine matches service component requirements against node capabilities and
performs the necessary dependency resolution. More details about this mapping pro-
cess can be found in [8], [9]. Since the service creation engine is implemented on each
active node, active node manufacturers are enabled to optimize the mapping process for
their particular node. In this way it is possible to exploit proprietary, advanced features
of an active node. The selection of service components is based on service descriptors.

The Code Manager performs the execution environment independent part of ser-
vice component management. During the deployment phase, it fetches code modules
identified by the service tree from the service repository. It also communicates with
Node Management to perform EE-specific part of installation and instantiation of code
modules. The Code Manager maintains a database containing information about in-
stalled code modules and their association with service components.

4.3 Deploying an Example Service

This section describes a scenario in which an example active service is being deployed.
After the structure of the service is presented, the details of the ASP components inter-
actions are given.

Example Service. In order to evaluate our architecture, a transcoder service has been
implemented [13] and deployed in the FAIN test bed (cf. figure B). The service func-
tionality is implemented in two code modules, a transcoder controller module and a
transcoder engine module. Both are to be deployed on the same node. Three service de-
scriptors are used to hold the corresponding meta-information. The first service descrip-
tor holds information about an abstract implementation of a transcoder. In particular, it
contains references to two sub-services — a transcoder controller and a transcoder engine
— which make up the final transcoder service. Both sub-services, transcoder controller
and transcoder engine, may be abstract implementations themselves. In the transcoder
version we implemented, however, the sub-services are simple implementations. That
is, each sub-service consists of service descriptor and associated code module. The ser-
vice descriptors for simple implementations (cf. figure [£3) holds both EE-unspecific
and EE-specific information. The EE-unspecific part identifies, among others, the EE
in which a particular code module is supposed to be executed, as well as the name
and/or location of the code module. For our Java-based EE, the EE-specific part, which
can be found in the PROPERTIES section, contains information such as codepath, and
main class name, and others.

Figure[S]presents the configuration of the FAIN test bed and the system components
involved in the deployment process. The FAIN test bed contains active nodes located at
FhG, ETH and UPC, the FAIN Consortium partners’ sites. On each of the active nodes,
both the Node Management Framework and node-level Active Service Provisioning

96 Marcin Solarski, Matthias Bossardt, and Thomas Becker

<?xm version="1.0" encodi ng="UTF-8"?>
<SERVI CE xni ns: xsi ="ht t p://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
xsi : noNamespaceSchemaLocat i on="C: chanel eon. xsd" xsi : type="1 MPLEMENTATI ON" >
<DESCRI PTI ON>
<SERVI CE_NAME>t r anscoder _contr ol | er </ SERVI CE_NAME>
<SERVI CE_I D/ >
<PROVI DER>FAI N</ PROVI DER>
<VERSI ON>0. 1</ VERSI ON>
</ DESCRI PTI ON>
<PROPERTI ES>
<PROPERTY>
<KEY>mai nCl assNane</ KEY>
<VALUE>or g.i st _fain.services.transcoder_controller.
Tr anscoder Manager </ VALUE>
</ PROPERTY>
<PROPERTY>
<KEY>mai nCodePat h</ KEY>
<VALUE>/usr/local /jnf-2.1.1/1ib/jnf.jar:/usr/local/jnf-2.1.1/1ib/
sound.jar:/usr/local/jnf-2.1.1/1ib</VALUE>
</ PROPERTY>
</ PROPERTI ES>
<ENVI RONMENT>
<EE_NAME>JVMK/ EE_NAME>
<EE_VERSI ON>1. 3. 1</ EE_VERSI ON\>
</ ENVI RONMENT>
<CODE xsi : t ype="CODE_LOCATI ON' >
<CODEBASE>j vim t ranscoder 1. FAI N. t ranscoder 1. j ar </ CODEBASE>
</ CODE>
</ SERVI CE>

Fig. 4. XML service descriptor example

systems are running. The network ASP components are located so that the Service
Repository is at UCL in London, the Service Registry at FhG and the Network ASP
Manager at UPC.

In an example scenario, the Service Provider requests deployment of his transcoder
service. The service is composed of two service components that need to run colocated
on a Java-enabled active node. The network ASP decides that the optimal target envi-
ronment is the active node at ETH and sends a node-level deployment request to the
node ASP on the target node. The node ASP processes the requests by resolving ser-
vice dependencies, fetching the needed code modules and triggering the EE-specific
installation process. Finally, a transcoder service instance is created.

Now the service is ready to use. The service provider may configure the transcoder
to convert a JPEG video stream into a H.263 format and to forward the video data to a
given receiver.

5 Reéated Work

The work of Marcus Brunner et al. on Virtual Active Networks[2] defines an architec-
ture for the creation and management of services in an active network. However, it lacks
the component-oriented service model allowing to flexibly combine functionality out of
service components. The framework defined by the IETF For CES [4] separates func-
tionality found on a network node into forwarding and controlling elements. Further,

Component-Based Deployment and Management of Services in Active Networks 97

Vi el

| T

Service Registry || At i

: T: Vice "ee y_.._-.}‘-f.?'___ " Ll o
57 Node AsP }i i) fm, e
. iy e

-
S Videosink i
. ¥ Meillver ramean Sea
< = k Alsters .

Fig. 5. Deploying the transcoder service — component distribution

ForCES aims at defining a model which describes how those elements are connected
to form a self-contained network element.In comparison to our work ForCES seems to
have a narrower scope focussing on the control and forwarding planes. NetScript [6]
uses a recursive mechanism for the composition of services from components. However,
it does not deal with the service deployment process and does not support multiple, con-
current execution environments. The LARA active router architecture developed at
the University of Lancaster [3] is also based on components. This architecture allows to
create services from components in a flexible and extensible way. However, this work
focuses on the runtime aspects and doesn’t define a mechanism to map a service de-
scription to interconnected component instances. The AMNet project now continued
in the flexinet project [[7] defines an architecture for programmable networks. Service
modules can be loaded from a repository to active nodes where they run inside execu-
tion environments on top of a resource control layer. Although it is possible to combine
modules out of multiple object code pieces there seems to be no explicit component
model for services. The CORBA Component Model (CCM) defines languages
to specify components and their implementations. Further it defines a deployment and
runtime environment for components. On the other hand it concentrates on enterprise
applications and sticks to a client-server model. It doesn’t allow to introduce new kinds
of ports (e.g. stream oriented) for connecting components.

6 Discussion and Future Work

The approach presented in this paper covers the whole process of handling services
in active networks beginning with a service model and stretching to deployment and
runtime architectures. The choice of a component-based approach facilitates the fine-
grained service description, deployment, and management. In the completeness of our
approach, not focussing on one aspect while neglecting others, we see its novelty.
Particular features are: out-of-band deployment, separation of service metadata and
code, node-level service component dependency resolution, component-oriented ser-
vice model and support for heterogeneous service implementations.

98

Marcin Solarski, Matthias Bossardt, and Thomas Becker

Our concepts have been designed and implemented as part of the FAIN architec-

ture for active networks. First working prototypes can give a qualitative proof for the
feasablitity of the design. A quantitative evaluation is pending and will be tackled dur-
ing the ongoing last year of the project using the project’s international testbed.

Besides the quantitative evaluation our future work will focus on extending our

architecture with regard to its flexibility and robustness. On the node level, we intend to
consider upgrades of running active services on the fly to achieve better availability of
rapidly changing implementations of the services. Further, we target for an optimisaton
of the network-wide service code distribution.

References

10.

11.

12.

13.

14.

15.

. Tennenhouse, D.L., Wetherall, D.J.: Towards an Active Network Architecture. Computer

Communication Review, Vol. 26, No. 2, April 1996

. Brunner, M., Plattner, B., Stadler, R.: Service Creation and Management in Active Telecom

Networks. Communications of the ACM, April 2001

. Galis, A., Plattner, B., Moeller, E., Laarhuis, J., Denazis, S., Guo, H., Klein, C., Serrat, J.,

Karetsos, G., Todd, C.: A Flexible IP Active Networks Architecture. International Working
Conference on Active Networks (IWAN 2000), Tokyo, Japan, October 2000

. IETF ForCES Working Group: Forwarding and Control Element Separation,

http://www.ietf.org/html.charters/forces-charter.html

. Schmid, S., Finney, J., Scott, A.C., Shepherd, W.D.: Component-based Active Network Ar-

chitecture. Proceedings of 6th IEEE Symposium on Computers and Communications, 3-5
July 2001

. Da Silva, S., Florissi, D., Yemini, Y.: Composing Active Services in NetScript. Position

paper, DARPA Active Networks Workshop, Tucson, AZ, March 9-10, 1998.

. Fuhrmann, T., Harbaum, T., Schller, M., Zitterbart, M., AMnet 2.0: An Improved Architec-

ture for Programmable Networks, submitted to IWAN’02, available from www.flexinet.de

. Bossardt, M., Ruf, L., Stadler, R., Plattner, B.: A Service Deployment Architecture for Het-

erogeneous Active Network Nodes. Kluwer Academic Publishers, 7th Conference on Intel-
ligence in Networks (IFIP SmartNet 2002), Saariselkd, Finland, April 2002

. Bossardt, M., Ruf, L., Stadler, R., Plattner, B.: Service Deployment on High Performance

Active Network Nodes. IEEE Network Operations and Management Symposium (NOMS
2002), Florence, Italy, April 2002

OMG: The Common Object Request Broker: Architecture and Specification.
http://www.omg.org/cgi-bin/doc?formal/02-05-15.pdf, Mai 2002

OMG: CORBA Components final submission. http://www.omg.org/cgi-bin/doc?orbos/99-
02-05

FAIN Deliverable D1: Requirements Analysis and Overall Architecture. FAIN Consortium,
May 2001, pp. 11-18

FAIN Deliverable D4: Revised Active Node Architecture and Design. FAIN Consortium,
May 2002

FAIN Deliverable D5: Revised Specification of Case Study Systems. FAIN Consortium, May
2002

FAIN Deliverable D6: Definition of Evaluation Criteria and Plan for the Trial. FAIN Con-
sortium, December 2001

	Component-Based Deployment and Management of Services in Active Networks
	Introduction
	Service Model
	Node Management Architecture
	Design
	Implementation

	Service Deployment Architecture
	Functionality of the Active Service Provisioning System
	 Design
	Deploying an Example Service

	Related Work
	Discussion and Future Work
	References

