Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2556))

Abstract

The inertia of a square matrix A is defined as the triple (i+(A), i-(A), i0(A)), where i+(A), i-(A), and i0(A) are the number of eigenvalues of A, counting multiplicities, with positive, negative, and zero real part, respectively. A hard problem in Linear Algebra is to compute the inertia. No method is known to get the inertia of a matrix exactly in general. In this paper we show that the inertia is hard for PL (probabilistic logspace) and in some cases the inertia can be computed in PL. We extend our result to some problems related to the inertia. Namely, we show that matrix stability is complete for PL and the inertia of symmetric matrices can be computed in PL.

Supported by the Deutsche Forschungsgemeinschaft

Part of the work done at Universität Ulm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender, V Arvind, and M. Mahajan. Arithmetic complexity, Kleene closure, and formal power series, 1999.

    Google Scholar 

  2. E. Allender and M. Ben-Or. Electronic Communication, 2001.

    Google Scholar 

  3. E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible systems of linear equations. Computational Complexity, 8:99–126, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Allender. Personal Communication, 2002.

    Google Scholar 

  5. E. Allender and M. Ogihara. Relationship among PL, #L, and the determinant. RAIRO-Theoretical Informatics and Applications, 30:1–21, 1996.

    MATH  MathSciNet  Google Scholar 

  6. S. Berkowitz. On computing the determinant in small parallel time using a small number of processors. Information Processing Letters, 18:147–150, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Damm. DET = L(#L). Technical Report Informatik-Preprint 8, Fachbereich Informatik der Humboldt Universitaet zu Berlin, 1991.

    Google Scholar 

  8. S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Computer and System Sciences, 48:116–148, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Fortune. Exact computation of the inertia of symmetric integer matrices. In 32th Symposium on Theory of Computing, STOC 2000, pages 556–564. ACM Press, 2000.

    Google Scholar 

  10. F. Gantmacher. The Theory of Matrices, volume 1 and 2. AMS Chelsea Publishing, 1977.

    Google Scholar 

  11. A. Graham. Kronnecker Products and Matrix Calculus: With Applications. Ellis Horwood Ltd., 1981.

    Google Scholar 

  12. R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 1985.

    Google Scholar 

  13. R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1991.

    Google Scholar 

  14. T. M. Hoang and T. Thierauf. The complexity of verifying the characteristic polynomial and testing similarity. In 15th IEEE Conference on Computational Complexity (CCC), pages 87–95. IEEE Computer Society Press, 2000.

    Google Scholar 

  15. T. M. Hoang and T. Thierauf. The complexity of the minimal polynomial. In 26th International Symposium, MFCS 2001, pages 408–420. Springer, 2001.

    Google Scholar 

  16. T. M. Hoang and T. Thierauf. The complexity of the characteristic and the minimal polynomial. Invited paper to the special issue in Theoretical Computer Scienceof the 26th MFCS conference 2001, to appear, 2002.

    Google Scholar 

  17. D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, 1991.

    Google Scholar 

  18. C. A. Neff. Specified precision root isolation is in NC. Journal of Computer and System Science, 48:429–463, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. A. Neff and J. H. Reif. An efficient algorithm for the complex roots problem. Journal of Complexity, 12:81–115, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Ogihara. The PL hierarchy collapses. SIAM Journal on Computing, 27:1430–1437, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Santha and S. Tan. Verifying the determinant in parallel. Computational Complexity, 7:128–151, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Toda. Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Dept. of Computer Science and Information Mathematics, University of Electro-Communications, Chofu-shi, Tokyo 182, Japan, 1991.

    Google Scholar 

  23. L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189–201, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8:410–421, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Valiant. Why is Boolean complexity theory difficult. In M.S. Paterson, editor, Boolean Function Complexity, London Mathematical Society Lecture Notes Series 169. Cambridge University Press, 1992.

    Google Scholar 

  26. V Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In 6th IEEE Conference on Structure in Complexity Theory, pages 270–284, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoang, T.M., Thierauf, T. (2002). The Complexity of the Inertia. In: Agrawal, M., Seth, A. (eds) FST TCS 2002: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2002. Lecture Notes in Computer Science, vol 2556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36206-1_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-36206-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00225-3

  • Online ISBN: 978-3-540-36206-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics