Abstract
This paper summarizes our recent development of algorithms that construct feasible trajectories for problems that involve both differential constraints (typically in the form of an underactuated nonlinear system), and global constraints (typically arising from robot collisions). Dynamic programming approaches are described that produce approximately-optimal solutions for low-dimensional problems. Rapidly-exploring Random Tree (RRT) approaches are described that can find feasible, non-optimal solutions for higher-dimensional problems. Several key issues for future research are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for motion planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 632–637, 2002.
T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, London, 1982.
J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field techniques for robot path planning. IEEE Trans. Syst., Man, Cybern., 22(2):224–241, 1992.
J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. Algorithmica, 10:121–155, 1993.
R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.
R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton University Press, Princeton, NJ, 1962.
D. P. Bertsekas. Convergence in discretization procedures in dynamic programming. IEEE Trans. Autom. Control, 20(3):415–419, June 1975.
J. T. Betts. Survey of numerical methods for trajectory optimization. J. of Guidance, Control, and Dynamics, 21(2):193–207, March-April 1998.
M. Branicky, S. M. LaValle, K. Olsen, and L. Yang. Quasi-randomized path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 1481–1487, 2001.
F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM J. Control and Optimization, 40(1):166–190, 2001.
J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning in the plane. Discrete and Computational Geometry, 6:461–484, 1991.
J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.
P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized trajectory design. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages 43–48, 2001.
P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring random trees. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 267–272, 2002.
M. Cherif. Kinodynamic motion planning for all-terrain wheeled vehicles. In IEEE Int. Conf. Robot. & Autom., 1999.
C. Connolly, R. Grupen, and K. Souccar. A Hamiltonian framework for kino-dynamic planning. In Proc. of the IEEE International Conf. on Robotics and Automation (ICRA’95), Nagoya, Japan, 1995.
D. F. Delchamps. Stabilizing a linear system with quantized output record. IEEE Trans. Autom. Control, 35(8):916–926, 1990.
B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planning: Robots with decoupled dynamics bounds. Algorithmica, 14(6):443–479, 1995.
B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic planning. Journal of the ACM, 40:1048–66, November 1993.
Th. Fraichard and C. Laugier. Kinodynamic planning in a structured and time-varying 2d workspace. In IEEE Int. Conf. Robot. & Autom., pages 2: 1500–1505, 1992.
E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile autonomous vehicles. AIAA Journal of Guidance and Control, 25(1):116–129, 2002.
L. J. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierarchical distance computation for moving convex bodies. In Proc. ACM Symposium on Computational Geometry, pages 265–273, 1999.
D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Int. J. Comput. Geom. & Appl., 4:495–512, 1999.
L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. & Autom., 12(4):566–580, June 1996.
R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock. Kinodynamic motion planning amidst moving obstacles. In IEEE Int. Conf. Robot. & Autom., 2000.
J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 995–1001, 2000.
R. E. Larson. A survey of dynamic programming computational procedures. IEEE Trans. Autom. Control, 12(6):767–774, December 1967.
R. E. Larson and J. L. Casti. Principles of Dynamic Programming, Part II. Dekker, New York, NY, 1982.
J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.
J.-P. Laumond. Finding collision-free smooth trajectories for a non-holonomic mobile robot. In Proc. Int. Joint Conf. on Artif. Intell., pages 1120–1123, 1987.
J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic motion planning for mobile robots. In J.-P. Laumond, editor, Robot Motion Plannning and Control, pages 1–53. Springer-Verlag, Berlin, 1998.
S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning. PhD thesis, University of Illinois, Urbana, IL, July 1995.
S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. TR 98-11, Computer Science Dept., Iowa State University, Oct. 1998.
S. M. LaValle and M. S. Branicky. On the relationship between classical grid search and probabilistic roadmaps. In Proc. Workshop on the Algorithmic Foundations of Robotics (to appear), December 2002.
S. M. LaValle and P. Konkimalla. Algorithms for computing numerical optimal feedback motion strategies. International Journal of Robotics Research, 20(9):729–752, September 2001.
S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 473–479, 1999.
S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In Workshop on the Algorithmic Foundations of Robotics, 2000.
S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions, pages 293–308. A K Peters, Wellesley, MA, 2001.
M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance computation. In IEEE Int. Conf. Robot. & Autom., 1991.
S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice methods for motion planning. In Submitted to IEEE International Conference on Robotics and Automation, 2003.
C. K. Liu and Z. Popovic. Synthesis of complex dynamic character motion from simple animations. In SIGGRAPH, 2002.
A. Marigo, B. Piccoli, and A. Bicchi. Reachability analysis for a class of quantized control systems. In Proc. IEEE Conf. on Decision and Control, 2000.
J. Matousek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.
E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm. In Proc. Int. Conf. of Society of Adaptive Behavior, Honolulu, 1992.
B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. Technical Report TR97-05, Mitsubishi Electronics Research Laboratory, 1997.
R. M. Murray and S. Sastry. Nonholonomic motion planning: Steering using sinusoids. Trans. Automatic Control, 38(5):700–716, 1993.
H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992.
C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion of a disc. Journal of Algorithms, 6:104–111, 1982.
I. Pohl. Bi-directional and heuristic search in path problems. Technical report, Stanford Linear Accelerator Center, 1969.
J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc. of IEEE Symp. on Foundat. of Comp. Sci., pages 421–427, 1979.
A. G. Sukharev. Optimal strategies of the search for an extremum. U.S.S.R. Computational Mathematics and Mathematical Physics, 11(4), 1971. Translated from Russian, Zh. Vychisl. Mat. i Mat. Fiz., 11, 4, 910-924, 1971.
S. Sundar and Z. Shiller. Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation. IEEE Trans. Robot. & Autom., 13(2):305–310, April 1997.
G. J. Toussaint, T. Başar, and F. Bullo. Motion planning for nonlinear underac-tuated vehicles using hinfinity techniques. Coordinated Science Lab, University of Illinois, September 2000.
H. Weyl. Über die Gleichverteilung von Zahlen mod Eins. Math. Ann., 77:313–352, 1916.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
LaValle, S.M. (2003). From Dynamic Programming to RRTs: Algorithmic Design of Feasible Trajectories. In: Bicchi, A., Prattichizzo, D., Christensen, H.I. (eds) Control Problems in Robotics. Springer Tracts in Advanced Robotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36224-X_2
Download citation
DOI: https://doi.org/10.1007/3-540-36224-X_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00251-2
Online ISBN: 978-3-540-36224-1
eBook Packages: Springer Book Archive