Skip to main content

From Dynamic Programming to RRTs: Algorithmic Design of Feasible Trajectories

  • Chapter
  • First Online:
Control Problems in Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 4))

  • 655 Accesses

Abstract

This paper summarizes our recent development of algorithms that construct feasible trajectories for problems that involve both differential constraints (typically in the form of an underactuated nonlinear system), and global constraints (typically arising from robot collisions). Dynamic programming approaches are described that produce approximately-optimal solutions for low-dimensional problems. Rapidly-exploring Random Tree (RRT) approaches are described that can find feasible, non-optimal solutions for higher-dimensional problems. Several key issues for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for motion planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 632–637, 2002.

    Google Scholar 

  2. T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, London, 1982.

    MATH  Google Scholar 

  3. J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field techniques for robot path planning. IEEE Trans. Syst., Man, Cybern., 22(2):224–241, 1992.

    Article  MathSciNet  Google Scholar 

  4. J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. Algorithmica, 10:121–155, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

    Google Scholar 

  6. R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton University Press, Princeton, NJ, 1962.

    MATH  Google Scholar 

  7. D. P. Bertsekas. Convergence in discretization procedures in dynamic programming. IEEE Trans. Autom. Control, 20(3):415–419, June 1975.

    Google Scholar 

  8. J. T. Betts. Survey of numerical methods for trajectory optimization. J. of Guidance, Control, and Dynamics, 21(2):193–207, March-April 1998.

    Google Scholar 

  9. M. Branicky, S. M. LaValle, K. Olsen, and L. Yang. Quasi-randomized path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 1481–1487, 2001.

    Google Scholar 

  10. F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM J. Control and Optimization, 40(1):166–190, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic planning in the plane. Discrete and Computational Geometry, 6:461–484, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  13. P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized trajectory design. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages 43–48, 2001.

    Google Scholar 

  14. P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring random trees. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 267–272, 2002.

    Google Scholar 

  15. M. Cherif. Kinodynamic motion planning for all-terrain wheeled vehicles. In IEEE Int. Conf. Robot. & Autom., 1999.

    Google Scholar 

  16. C. Connolly, R. Grupen, and K. Souccar. A Hamiltonian framework for kino-dynamic planning. In Proc. of the IEEE International Conf. on Robotics and Automation (ICRA’95), Nagoya, Japan, 1995.

    Google Scholar 

  17. D. F. Delchamps. Stabilizing a linear system with quantized output record. IEEE Trans. Autom. Control, 35(8):916–926, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  18. B. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planning: Robots with decoupled dynamics bounds. Algorithmica, 14(6):443–479, 1995.

    Article  MathSciNet  Google Scholar 

  19. B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic planning. Journal of the ACM, 40:1048–66, November 1993.

    Google Scholar 

  20. Th. Fraichard and C. Laugier. Kinodynamic planning in a structured and time-varying 2d workspace. In IEEE Int. Conf. Robot. & Autom., pages 2: 1500–1505, 1992.

    Google Scholar 

  21. E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile autonomous vehicles. AIAA Journal of Guidance and Control, 25(1):116–129, 2002.

    Article  Google Scholar 

  22. L. J. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierarchical distance computation for moving convex bodies. In Proc. ACM Symposium on Computational Geometry, pages 265–273, 1999.

    Google Scholar 

  23. D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Int. J. Comput. Geom. & Appl., 4:495–512, 1999.

    Article  MathSciNet  Google Scholar 

  24. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. & Autom., 12(4):566–580, June 1996.

    Google Scholar 

  25. R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock. Kinodynamic motion planning amidst moving obstacles. In IEEE Int. Conf. Robot. & Autom., 2000.

    Google Scholar 

  26. J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 995–1001, 2000.

    Google Scholar 

  27. R. E. Larson. A survey of dynamic programming computational procedures. IEEE Trans. Autom. Control, 12(6):767–774, December 1967.

    Google Scholar 

  28. R. E. Larson and J. L. Casti. Principles of Dynamic Programming, Part II. Dekker, New York, NY, 1982.

    MATH  Google Scholar 

  29. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

    Google Scholar 

  30. J.-P. Laumond. Finding collision-free smooth trajectories for a non-holonomic mobile robot. In Proc. Int. Joint Conf. on Artif. Intell., pages 1120–1123, 1987.

    Google Scholar 

  31. J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic motion planning for mobile robots. In J.-P. Laumond, editor, Robot Motion Plannning and Control, pages 1–53. Springer-Verlag, Berlin, 1998.

    Chapter  Google Scholar 

  32. S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning. PhD thesis, University of Illinois, Urbana, IL, July 1995.

    Google Scholar 

  33. S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. TR 98-11, Computer Science Dept., Iowa State University, Oct. 1998.

    Google Scholar 

  34. S. M. LaValle and M. S. Branicky. On the relationship between classical grid search and probabilistic roadmaps. In Proc. Workshop on the Algorithmic Foundations of Robotics (to appear), December 2002.

    Google Scholar 

  35. S. M. LaValle and P. Konkimalla. Algorithms for computing numerical optimal feedback motion strategies. International Journal of Robotics Research, 20(9):729–752, September 2001.

    Google Scholar 

  36. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 473–479, 1999.

    Google Scholar 

  37. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In Workshop on the Algorithmic Foundations of Robotics, 2000.

    Google Scholar 

  38. S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions, pages 293–308. A K Peters, Wellesley, MA, 2001.

    Google Scholar 

  39. M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance computation. In IEEE Int. Conf. Robot. & Autom., 1991.

    Google Scholar 

  40. S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice methods for motion planning. In Submitted to IEEE International Conference on Robotics and Automation, 2003.

    Google Scholar 

  41. C. K. Liu and Z. Popovic. Synthesis of complex dynamic character motion from simple animations. In SIGGRAPH, 2002.

    Google Scholar 

  42. A. Marigo, B. Piccoli, and A. Bicchi. Reachability analysis for a class of quantized control systems. In Proc. IEEE Conf. on Decision and Control, 2000.

    Google Scholar 

  43. J. Matousek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  44. E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm. In Proc. Int. Conf. of Society of Adaptive Behavior, Honolulu, 1992.

    Google Scholar 

  45. B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. Technical Report TR97-05, Mitsubishi Electronics Research Laboratory, 1997.

    Google Scholar 

  46. R. M. Murray and S. Sastry. Nonholonomic motion planning: Steering using sinusoids. Trans. Automatic Control, 38(5):700–716, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  47. H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, USA, 1992.

    MATH  Google Scholar 

  48. C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion of a disc. Journal of Algorithms, 6:104–111, 1982.

    Article  MathSciNet  Google Scholar 

  49. I. Pohl. Bi-directional and heuristic search in path problems. Technical report, Stanford Linear Accelerator Center, 1969.

    Google Scholar 

  50. J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc. of IEEE Symp. on Foundat. of Comp. Sci., pages 421–427, 1979.

    Google Scholar 

  51. A. G. Sukharev. Optimal strategies of the search for an extremum. U.S.S.R. Computational Mathematics and Mathematical Physics, 11(4), 1971. Translated from Russian, Zh. Vychisl. Mat. i Mat. Fiz., 11, 4, 910-924, 1971.

    Google Scholar 

  52. S. Sundar and Z. Shiller. Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation. IEEE Trans. Robot. & Autom., 13(2):305–310, April 1997.

    Google Scholar 

  53. G. J. Toussaint, T. Başar, and F. Bullo. Motion planning for nonlinear underac-tuated vehicles using hinfinity techniques. Coordinated Science Lab, University of Illinois, September 2000.

    Google Scholar 

  54. H. Weyl. Über die Gleichverteilung von Zahlen mod Eins. Math. Ann., 77:313–352, 1916.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

LaValle, S.M. (2003). From Dynamic Programming to RRTs: Algorithmic Design of Feasible Trajectories. In: Bicchi, A., Prattichizzo, D., Christensen, H.I. (eds) Control Problems in Robotics. Springer Tracts in Advanced Robotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36224-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-36224-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00251-2

  • Online ISBN: 978-3-540-36224-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics