Abstract
Motion planning and control are key problems in a collection of robotic applications including the design of autonomous agile vehicles and of minimalist manipulators. These problems can be accurately formalized within the language of affine connections and of geometric control theory. In this paper we overview recent results on kinematic controllability and on oscillatory controls. Furthermore, we discuss theoretical and practical open problems as well as we suggest control theoretical approaches to them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
E. L. Allgower and K. Georg. Numerical Continuation Methods: An Introduction. Springer Verlag, New York, NY, 1990.
J. Borenstein. The OmniMate: a guidewire-and beacon-free AGV for highly reconfigurable applications. International Journal of Production Research, 38(9):1993–2010, 2000.
F. Bullo. Series expansions for the evolution of mechanical control systems. SIAM J Control Optim, 40(1):166–190, 2001.
F. Bullo. Averaging and vibrational control of mechanical systems. SIAM J Control Optim, 41(2):542–562, 2002.
F. Bullo, J. Cortés, A. D. Lewis, and S. Martínez. Vector-valued quadratic forms in control theory. In Proc MTNS, Notre Dame, IN, August 2002. Workshop on Open Problems in Systems Theory.
F. Bullo, N. Ehrich Leonard, and A. D. Lewis. Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups. IEEE Trans Automat Control, 45(8):1437–1454, 2000.
F. Bullo and A. D. Lewis. On the homogeneity of the affine connection model for mechanical control systems. In Proc CDC, pages 1260–1265, Sydney, Australia, December 2000.
F. Bullo, A. D. Lewis, and K. M. Lynch. Controllable kinematic reductions for mechanical systems: concepts, computational tools, and examples. In Proc MTNS, Notre Dame, IN, August 2002.
F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Trans Robotics Automat, 17(4):402–412, 2001.
F. Bullo and M. Zefran. On mechanical control systems with nonholonomic constraints and symmetries. Syst & Control Lett, 45(2):133–143, 2002.
M. Camariña, F. Silva Leite, and P. E. Crouch. Splines of class Ck on non-Euclidean spaces. IMA Journal of Mathematical Control & Information, 12:399–410, 1995.
G. Campion, G. Bastin, and B. D’Andrea-Novel. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robotics Automat, 12(1):47–62, 1996.
G. Chirikjian and J. W. Burdick. Kinematics of hyperredundant locomotion. IEEE Trans Robotics Automat, 11(6):781–793, 1994.
J. Cortés, S. Martínez, and F. Bullo. On nonlinear controllability and series expansions for Lagrangian systems with dissipative forces. IEEE Trans Automat Control, 47(8):1396–1401, 2002.
G. Endo and S. Hirose. Study on roller-walker (system integration and basic experiments). In Proc ICRA, pages 2032–7, Detroit, MI, May 1999.
S. Hirose. Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press, Oxford, UK, 1993.
S. Hirose. Variable constraint mechanism and its application for design of mobile robots. Int J Robotics Research, 19(11):1126–1138, 2000.
J. K. Hodgins and M. H. Raibert. Biped gymnastics. Int J Robotics Research, 9(2):115–132, 1990.
R. Holmberg and O. Khatib. Development and control of a holonomic mobile robot for mobile manipulation tasks. Int J Robotics Research, 19(11):1066–1074, 2000.
D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. International Journal of Computational Geometry and Applications, 9(4):495–512, 1999.
J. C. Jalbert, S. Kashin, and J. Ayers. Design considerations and experiments of a biologically based undulatory lamprey AUV. In Ninth International Symposium on Unmanned Untethered Submersible Technology, Durham, NH, 1995.
T. Karatas and F. Bullo. Randomized searches and nonlinear programming in trajectory planning. In Proc CDC, pages 5032–5037, Orlando, FL, December 2001.
N. Kato and T. Inaba. Guidance and control of fish robot with apparatus of pectoral fin motion. In Proc ICRA, pages 446–451, Leuven, Belgium, May 1998.
L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional space. IEEE Trans Robotics Automat, 12(4):566–580, 1996.
S. D. Kelly, R. J. Mason, C. T. Anhalt, R. M. Murray, and J. W. Burdick. Modelling and experimental investigation of carangiform locomotion for control. In Proc ACC, pages 1271–1276, Philadelphia, PA, 1998.
P. S. Krishnaprasad and D. P. Tsakiris. G-snakes: Nonholonomic kinetic chains on Lie groups. In Proc CDC, pages 2955–2960, Lake Buena Vista, FL, December 1994.
P. S. Krishnaprasad and D. P. Tsakiris. Oscillations, SE(2)-snakes and motion control: a study of the roller racer. Dynamics and Stability of Systems, 16(4):347–397, 2001.
S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Int J Robotics Research, 20(5):378–400, 2001.
A. D. Lewis. The geometry of the maximum principle for affine connection control systems. Preprint available at: http://penelope.mast.queensu.ca/~andrew, 2000.
A. D. Lewis. Simple mechanical control systems with constraints. IEEE Trans Automat Control, 45(8):1420–1436, 2000.
A. D. Lewis and R. M. Murray. Configuration controllability of simple mechanical control systems. SIAM J Control Optim, 35(3):766–790, 1997.
A. D. Lewis, J. P. Ostrowski, R. M. Murray, and J. W. Burdick. Nonholonomic mechanics and locomotion: the snakeboard example. In Proc ICRA, pages 2391–2400, San Diego, CA, May 1994.
S. Martínez and J. Cortés. Motion control algorithms for simple mechanical systems with symmetry. Acta Applicandae Mathematicae, 2002. To appear.
S. Martínez, J. Cortés, and F. Bullo. Analysis and design of oscillatory controls systems. IEEE Trans Automat Control, June 2001. Submitted. Available electronically at http://motion.csl.uiuc.edu.
T. McGeer. Passive dynamic walking. Int J Robotics Research, 9(2):62–82, 1990.
K. A. Mclsaac and J. P. Ostrowski. A geometric approach to anguilliform locomotion: modelling of an underwater eel robot. In Proc ICRA, pages 2843–8, Detroit, MI, May 1999.
R. M. Murray, Z. X. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, FL, 1994.
S. Ostrovskaya, J. Angeles, and R. Spiteri. Dynamics of a mobile robot with three ball-wheels. Int J Robotics Research, 19(4):383–393, 2000.
J. P. Ostrowski. Steering for a class of dynamic nonholonomic systems. IEEE Trans Automat Control, 45(8):1492–1497, 2000.
J. P. Ostrowski and J. W. Burdick. The geometric mechanics of undulatory robotic locomotion. Int J Robotics Research, 17(7):683–701, 1998.
F. G. Pin and S. M. Killough. A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans Robotics Automat, 10(4):480–9, 1994.
M. H. Raibert. Legged Robots that Balance. MIT Press, Cambridge, MA, 1986.
M. Rathinam and R. M. Murray. Configuration flatness of Lagrangian systems underactuated by one control. SIAM J Control Optim, 36(1):164–179, 1998.
S. Saha, J. Angeles, and J. Darcovich. The design of kinematically isotropic rolling robots with omnidirectional wheels. Mechanism and Machine Theory, 30(8):1127–1137, 1995.
J. A. Sethian. Level set methods: Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, New York, NY, 1996.
M. West and H. Asada. Design of ball wheel mechanisms for omnidirectional vehicles with full mobility and invariant kinematics. ASME Journal of Mechanical Design, 119(2):153–161, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Martínez, S., Cortés, J., Bullo, F. (2003). Motion Planning and Control Problems for Underactuated Robots. In: Bicchi, A., Prattichizzo, D., Christensen, H.I. (eds) Control Problems in Robotics. Springer Tracts in Advanced Robotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36224-X_4
Download citation
DOI: https://doi.org/10.1007/3-540-36224-X_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00251-2
Online ISBN: 978-3-540-36224-1
eBook Packages: Springer Book Archive