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Abstract. In this paper we outline how motion description languages provide use-
ful tools when designing multi-modal control laws in robotics. Of particular im-
portance is the introduction of the description length as a measure of how compli-
cated a given control procedure is. This measure corresponds to the number of bits
needed for coding the input string. Description length arguments can furthermore
be invoked for selecting sensors and actuators in a given robotics application, thus
providing a unified framework in which a number of major areas of robotics research
can coexist.

1 Introduction

When humans instruct each other how to carry out particular tasks, only a
limited number of tokenized instructions are used. In contrast to this, classic
control theory specifies a control action to be carried out at each time instant.
But, in a number of applications, such as semi-autonomous service robots for
industrial and domestic use, intelligent appliances, and communication con-
strained embedded and/or teleoperated devices, the control procedures have
a natural, linguistic flavor. In this paper we take the point of view that such
tokenized instructions are useful, not only in particular robotics applications,
but also for understanding how computer generated inputs to a robotics sys-
tem should be defined, selected, and coded in order to minimize the number
of bits transmitted from the computer to the robot. This should be achieved
while guaranteeing that the system meets its specifications. To this end, an
information theoretic approach to control theory will be developed, serving
as a useful tool not only for source coding of control signals, but also for
describing how symbolic instructions should be interpreted and operated on
by continuous systems. Questions concerning what sensors and actuators to
use in a given robotics application can be addressed quite elegantly within
this framework as well.

In order to understand the interactions between these two heterogeneous
components, i.e. between the symbolic computer programs and the contin-
uous device dynamics, different hybrid architectures, serving as abstractions
between continuous and discrete control, have been suggested. In [6] a general



2 Magnus Egerstedt

model for such hybrid systems is proposed:

&= f(z,y,v(lp]))
p=g(@,y,v(lp)))
y = h(z,v(p])),

where z is the continuous state of the system and y is the measured output
signal. Moreover, v is the symbolic input string from the motor control pro-
gram, and the evolution of the scalar p triggers the reading of the string v.
Here |-| denotes the floor operator, and g is assumed to be nonnegative for
all arguments.

In this paper we model the way linguistic control signals affect mechanical
devices on this form, and we will combine this model with the notion of a
motion description language (MDL), which refers to a framework for device
control, as proposed for example in [5,14,21]. By combining these two ideas
we will construct interpreter mechanisms for generating meaningful control
commands from symbolic inputs, and the outline of this paper is as follows:
In Section 2, the main objects of study, i.e. the motion description languages,
will be introduced for representing strings of idealized motions. Section 3
will consequently investigate how to design control laws using the MDL for-
malism. A cost criterion for evaluating the control laws will be introduced,
corresponding to the description lengths of the control procedures. This cost
can be interpreted as the number of bits needed for uniquely coding a given
control procedure. In Section 4 we will invoke a complexity argument, sim-
ilar to that in [22], that provides guidelines for how to choose sensors and
actuators for a given robotics application.

2 Motion Description Languages

Given a finite set, or alphabet, A, by A* we understand the set of all strings
of finite length over A. There is a naturally defined binary operation on this
set, namely the concatenation of strings, denoted by a; -as, i.e. a; -a; € A* if
a;,a; € A*. Relative to this operation, A* is a semigroup. If we include the
empty string in A* it becomes a monoid, i.e. a semigroup with an identity,
and a formal language is a subset of a free monoid over a finite alphabet.

Now, by a motion alphabet we mean a possibly infinite set of symbols
representing different control actions that, when applied to a specific robot,
define segments of motion. A MDL is thus given by a set of symbolic strings
that represent idealized motions, i.e. a MDL is a subset of a free monoid over
a given motion alphabet. Particular choices of MDLs become meaningful only
when the languages are defined relative to the physical robot that is to be
controlled. In this paper, we let the robot dynamics be given by

= F(z,u)
y=H(z),
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where u € U is a control signal, x € X C R" is the state of the system, and
H is a measurable mapping from X to Y assigning an output value to each
point z € X.!

Now, it is quite standard, when structuring the navigation task for au-
tonomous mobile robots, to decompose the task into basic building blocks,
e.g. behaviors [2,7], and in this paper we refer to such building blocks as
modes. Each mode should contain a description of the preplanned setpoints
(generated by the high-level mission planner), of the way the robot should re-
act to state and environmental changes (reactive control), and of when a new
mode of operation should guide the behavior of the robot (e.g. specify the
transition or arbitration rules). If we formalize these observations, following
the development in [5,14], we say that a mode is given by a triple (u, k, £),
where v € U is an open-loop component, k :' Y x U — U is a closed-loop
component, and £ : Y — {0,1} is an interrupt.

If, at time ¢, the robot receives the input string (u1, k1, &), - - -, (up, kp, &q),
then x evolves according to

T = F(w,kl(y,ul)); to <t< T

& =F(x,ky(y,uq)); Ty—1 <t < Ty,

where T; denotes the time at which the interrupt &; changes from 0 to 1.
The model of a trigger based hybrid system, as described in the intro-
duction, can moreover reproduce this behavior if symbols are interpreted
and operated on as follows: Let the input string to the trigger based hybrid
system be such that
U(l) = (ui;k’i)g’i)a (NS Z+7
and let

&= f(z,y,v(|pl)) = f(@,y, (), kip), €1p)) = Fz,kp) (Y, up)))
y = h(z,v(lp])) = b=, (wp), kip), €p)) = H(z

p = g(w7yav(|_pj)) = g(a:,y, (uijak[pJ7§LpJ) =

where § is a unit impulse, z(0) = zo, and p(0) = 1.

It is clear that we now have a construction that allows continuous ma-
chines to operate on linguistic inputs in a way that can be given a meaningful
control theoretic interpretation.

2.1 Navigation Example

In order to make matters somewhat concrete, we illustrate these ideas with
an example, found in [12]. What makes the control of mobile robots particu-

1 At this point we will not specify U and Y further but, as will be shown later,
different choices of input-output sets have a direct impact on how the control
procedures should be selected and coded.
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larly challenging is the fact that the robots operate in unknown, or partially
unknown environments. Any attempt to model such a system must take this
fact into account. We achieve this by letting the robot make certain observa-
tions about the environment, and we let the robot dynamics be given by

& =w, z,v € R2
1=, Y2 =Cf(.’1,'), Y1,Y2 € éR27

where ¢y is the contact force from the environment. The contact force could
either be generated by tactile sensors in contact with the obstacle or by range
sensors such as sonars, lasers, or IR-sensors.

Relative to this robot it is now possible to define the following two MDLs
for distinguishing between the open-loop and the closed-loop cases.

Definition 1 (Open-Loop and Closed-Loop MDLs). Let the Open-
Loop MDL, L, be given by the free monoid over the set

{(u7k7£) | u € %27 k(y17y27u) =u, é-: §R4 - {071}}7

where £ is any measurable mapping from % to {0, 1}. Consequently, let the
Closed-Loop MDL, L., be given by the free monoid over the set

{(u7k7§) | u=2F, k(y17y27u) € {K](U _yl)aDyZ}a 6: §R4 - {071}}7

where & > 0 is a given constant, D is any linear mapping from %2 to #2, and
zF is the given, desired robot position.

By a point-to-point navigation task we understand the problem of moving
the robot between given initial and final states in a safe way, and one straight-
forward question to investigate is how to design short strings of modes in £
and L. that achieve this? The reason why this is an interesting question is
that the paths generated by L, on the robot are identical to those paths
that are considered in the literature on the complexity of minimum time or
shortest path algorithms for robot motion planning in dynamic environments
[9].

This problem was studied in [12] and the following two theorems were
proved:

Theorem 1 (Open-Loop Complexity). (Egerstedt [12]) In a convez en-
vironment populated by N convex, polygonal obstacles with M > 3 vertices
each, the length of the shortest string (in the worst case) in Ly that drives
the robot between xo and xr is of order O(NM).

The proof of this theorem consists of establishing tight bounds on the
number of segments necessary for producing a piecewise linear path between
2o and zp. This path should furthermore not intersect the interior of any
obstacle. To find these bounds is equivalent to finding the shortest string in
Lo, since the only paths that can be generated on the particular robot under
investigation are piecewise linear when using words in L.



Motion Description Languages for Multi-Modal Control in Robotics 5

In [12] it was furthermore shown how to construct a closed-loop control
strategy that requires a lower number of instructions than O(N M), under
the assumption that the contact force from an obstacle in contact with the
robot is parallel to the outward normal of the surface of the obstacle.?

Theorem 2 (Closed-Loop Complexity). (Egerstedt [12]) In a convez en-
vironment populated by N convex, polygonal obstacles, an upper bound on the
length of the shortest (in the worst case) string in Lo is of order O(N).

The proof of Theorem 2 is constructive. When the robot is not in contact
with an obstacle, we let k(y1,y2,u) = k(u—y1), where k > 0, as in Definition
1. On the other hand, when the robot is in contact with an obstacle it seems
reasonable to follow the contour of that obstacle, as suggested in [17]. The
control strategy that we propose for this guarantees that the robot reaches
the unique global minimum (the point closest to zr on the obstacle), while
committing to a clockwise or counter-clockwise obstacle negotiation, before
it leaves the contour of the obstacle. The multi-modal control sequence is
thus an element in the set oga - (0oa - 0ga)* C L, where GA and OA
denotes “goal-attraction” and “obstacle-avoidance” respectively, and where
a* = {0,a,aa,aaaq,...}. The individual modes oga = (uga,kca,€ca) and
coa = (uoa,koa,€o4) are furthermore given by

(uga = zp
) kca(y1,y2,u) = k(u —y1)
_ JOif (y2,2r —y1) >0
\ §aa(yr,y2) = 1 otherwise
(uos = zF
< koa(y1,y2,u) = cR(=m/2)ys
_ J0if (g2, 2r —y1) <O or L(zr —y1,92) <0
\ foalyr,y2) = 1 otherwise.

Here R(6) is a 2 x 2 rotation matrix, ¢ > 0, and Z(«, 8) denotes the angle
between the vectors a and f.

An example of using this multi-modal control sequence is shown in Figure
1, and what this result means is that when the sensory information available
to us is sufficiently abundant, fewer instructions are necessary in the feedback
case than in the open-loop case. However, this way of measuring the com-
plexity of input strings in terms of their string lengths is not a very natural
complexity measure for the following two reasons:

1. The feedback instructions rely on sensory data, but string lengths do not
capture the complexity associated with making these measurements in
any meaningful way.

2 Since no unique normal vector exists when z belongs to a vertex on the boundary
on P, we let the output, y», take on any value in the normal cone, ie. ys €
Np(z) = {h € R* | (h,y —x) <0, Vy € P}.
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2. If the input strings were to be transmitted over a communication chan-
nel, the number of bits needed for coding the instructions should affect
the complexity of the input strings, which is not reflected by the string
lengths.

Based on these two observations, we instead introduce the description length,
i.e. the number of bits needed for describing a given input string, as a natu-
ral complexity measure when designing multi-modal control procedures over
motion description languages.

Fig. 1. A multi-modal input string in L.; is used for negotiating two rectangular
obstacles. Depicted is a simulation of a Nomadic Scout in the Nomadic Nserver
environment.

3 Description Lengths

If we allow the control modes to contain mappings to or from sets of infinite
cardinality, it is clear that the description lengths would be infinite as well.
Therefore it is necessary to focus our attention on finitely describable control
procedures. However, this is not really a restriction. Recall that the robot
dynamics was given by #(t) = F(x(t),u(t)), where u is the control signal and
xz € X C R" is the state of the system. Based on the choice of actuators,
u belongs to some set U. Since all real, physical stepper motors have finite
range and resolution, and since the control signals are computer generated,
U has finite cardinality, which is the case in the emerging area of quantized
control as well [3,11,15]. It is also conceivable, as pointed out in [1], that we
would like to further restrict the control signal, e.g. © € {Umin, Umax} = U,
resulting in somewhat more tractable design and verification processes. This
would limit the cardinality of U further, and for analogous reasons, we let
the observations made by the robot take on values in the finite set Y. This
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implies that the input strings take on values in the set X*, where X' is the
finite set X = U x UY*V x {0,1}Y.

Now, assume that we are given a string of modes & € X*. Then the
number of bits needed for describing o uniquely is given by the following
definition [10,22]:

Definition 2 (Description Length). Consider the finite set X. We say
that a word o € X* has description length

D(o, %) = |o|logy(card(X)),

where || denotes the length of o, i.e. the number of modes in the string,
and card(-) denotes cardinality.

The description length thus tells us how complicated o is, i.e. how many bits
we need for describing it, and since ¥ = U x UY*V x {0,1}Y we directly
see that a higher resolution sensor (e.g. laser-scanners) result in a larger
Y than what is the case for a lower resolution sensor (e.g. sonars). A better
sensor might thus make the control procedures significantly more complicated
while only providing marginally better performance. This trade-off between
complexity and performance is something that can be capitalized on when
designing control laws as well as when choosing what sensors and actuators
to use. The idea is simply to pick (U,Y,o € X*) in such a way as to make
the robot behave satisfactory, while minimizing the description lengths of the
control procedures.

3.1 Free-Running, Feedback Automata

In order to illustrate how the description length measure can be a useful
tool in multi-modal control design, we focus our attention on the finitely
describable aspects of finite state machines.

If we let X,U be finite sets, and let 6§ € XX*U, then we can identify
(X,U,6) with a finite automaton (see for example [16]), whose operation is
given by zg11 = 0(zg,ur). If we add another finite set Y and a mapping
v € YX to the definition, we get an output automaton (X,Y,U,d,~), where
Tp1 = 0@k, ux) and yi = (k).

However, in order to let finite automata read strings of control modes, the
model must be modified in such a way that instruction processing is akin to
the way in which differential equations “process” piecewise constant inputs.
For this, a dynamical system called a free-running, feedback automaton (FRF-
automaton), was introduced in [14]. The idea is to let such an automaton read
an input from a given alphabet, and then advance the state of the automaton
repeatedly (free-running property) without reading any new inputs until an
interrupt is triggered. Additional structure is furthermore imposed on the
input set to allow for feedback signals to be used. Hence a FRF-automaton
is a free-running automaton whose input alphabet admits the structure X' =
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U x K x =, where, as before, U is a finite set, K = UY*V and = = {0,1}Y.
Hence, the input to a FRF-automaton is a triple (u, k,&), where u € U, k :
Y xU = U, and €:Y — {0,1}.

Definition 3 (Free-Running, Feedback Automaton). Let X,Y,U be
finite sets and let 6 : X x U — X, v : X — Y be given functions. Let
Y =U x K x £, where U is a finite set, K = UY*Y and £ = {0,1}¥. We
say that (X, XY, 4, ) is a free-running, feedback automaton whose evolution
equation is

Tpy1 = 6(wk7klk (ykJU’lk))7 Yr = ’7(1'16)

lk+1 = lk + §lk (yk)a

given the input string (u1, k1,&1) - - (up, kp, &) € X*.

It should be noted that the free-running property of the FRF-automata
implies that they can, in general, be guided along a path using fewer instruc-
tions than the classical finite automata. However, since the input set to a
finite automaton is simply the finite set U, while the input set to the cor-
responding FRF-automaton is of the form U x K x =, the input set has a
higher cardinality in the latter of these cases. As already pointed out, any
reasonable measure of the complexity of a control procedure must take the
size of the input space into account since the number of bits required to code
a word over a given alphabet typically depends logarithmically on the size
of the alphabet. (See for example [10].) This dependency is captured in a
natural way if we define the specification complexity of a control task as the
description length of the input sequence.

Definition 4 (Specification Complexity). Consider a FRF-automaton,
A, with state space X and input set X. Let o be the word of minimal de-
scription length over X' that drives the automaton between two given states
Z0,%5 € X. We then say that the task of driving A between g and z; has
specification complexity C(A,zo,zf) = D(o, X).

3.2 Feedback Can Reduce the Specification Complexity

We here review the main results from [12] and [14] in order to see how the
complexity of the instructions can be reduced when using landmark-based
navigation. Since the cardinality of the input set depends on the size of the
domain of the feedback mapping, a smaller domain can be expected to reduce
the complexity. In order to make this observation rigorous, we need to intro-
duce the notions of ballistic reachability and control-invariant reachability: A
set X, C X is ballistically reachable from x if there exists a u € U such that
§(z,u?) € X, for some ¢ € Z*. Furthermore, X, is ballistically reachable
from X; C X if there exists a u € U such that for all x € X; it holds that
8(z,u?®) € X, for some q(z) € Z". An element z € X, C X is said to be
control-invariantly reachable in X, if it can be reached from all states in X
without the trajectory leaving X.
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Now, in order to compare purely open-loop control, i.e. when no obser-
vations are made, with a situation where sensory information is available,
we must be able to generate open-loop motions on the FRF-automata. It is
clear that the input sequence oo = (U1, kot, &ot) - - - (Uq, ko1, &o1) € EZ*, where
ko(u,y) =uVu e U, yeY, &u(y) =1 Vy € Y achieves this. However, this
word has length ¢, and it is drawn from the input alphabet ¥ = U x UY *V x
{0,1}Y, and thus the description length is D(o 1, X) = glog,(card(X)). But,
this is clearly not the result we would like to have. Instead we can restrict the
input alphabet to be Xy = U x {ko} % {&n}, which has cardinality card(U).
The description length of o is now D(o 1, o) = qlogy(card(U)), relative
to the smaller input set X,;.

Consider the connected, classical, finite automaton A = (X, U, d). We re-
call that the backwards eccentricity of a state, ecc(4, x), denotes the minimum
number of instructions necessary for driving the automaton from any other
state to z. (See for example [8].) We furthermore let the radius of A be given
by

radius(A) = min ecc(4, ).
zeX

Now, consider the FRF-automaton A. If we let

C(A, 1’) = :glgg(( C(A, Zo, :E),

then we directly get that
C(Aor,x) > radius(A)log,(card(U)),

where A, is the FRF-automaton (X,Y, X, 4,7v), and A is the classical au-
tomaton (X, U, §).

Theorem 3. (Egerstedt and Brockett [1]]) Assume that card(U) > 2. Sup-
pose that xy € Xy, where Xy is an observable subset for the finite automaton
A, i.e. it is possible to construct an observer that converges in a finite num-
ber of steps on the subset Xy. Assume that card(v(Xy)) < card(Xy) and
Y(X5) Ny (X\Xy) = 0. If Xy is ballistically reachable from X\Xy, and zy
is control-invariantly reachable in Xy, then there exists a FRF-automaton
Arpr = (X,Y, X', 4,v) such that

C(Arrr,zf) < 4card(Xy)
C(Ao,zf) ~ radius(A)’

The proof of Theorem 3 consists of constructing one closed-loop instruc-
tion, consisting of two parts. The first part is given by a ballistic motion, i.e.
a long open-loop motion, followed by an observer-based feedback instruction
defined on the reduced set Xy, as seen in Figure 2(a). However, goals are sel-
dom final goals. More often they tend to be intermediate goals in a grander
scheme. This is for instance the case when mobile robots are navigating using
landmarks.
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3.3 Navigation Using Landmarks

It is clear that the premises on which the previous theorem is based are too
restrictive to capture the chained structure that intermediary goals give rise
to. Instead we need to extend the trajectories through a series of goal states.
This can be achieved by assuming that we work with an automaton where
subset-observers can be designed around different states, i.e. the intermediate
goals. We also assume that the sets on which the observers are defined are
ballistically reachable from each other. We could then use open-loop control
for driving the system between these sets on the parts of the state space where
the lack of sensory information prevents effective use of feedback. We com-
pliment this with feedback controllers on the subsets where subset-observers
can be constructed, as seen in Figure 2(b).

Theorem 4 (Navigation Using Landmarks). (Egerstedt and Brockett
[14]) Assume that card(U) > 2. Let the sets X1, ... ,X, be disjoint, observ-
able subsets with cardinality less than or equal to C, where card(v(X;)) <
zy € X, be control-invariantly reachable in X, and let X, be ballistically
reachable from xo. Assume that there exists intermediary goals x; € X;, i =
1,...,n — 1 such that x; is control-invariantly reachable in X; and X;y; is
ballistically reachable from x;. Then there exists a FRF-automaton Apgrp =
(X,Y, X', 6,v) such that

C(AFRF,.’L'f) < 47’LC
C(Ao,zf) ~ radius(A)’

One conclusion to be drawn from Theorem 4 is that the increase in de-
scription length, caused by the summation over many intermediate goals, can
be counter-acted by making the sets where feedback is effective small. In the
mobile robot case, this would correspond to using many easily detectable
landmarks as a basis for the navigation system.

4 A Unified Approach to Control and Hardware
Design

Another issue that can be tackled quite elegantly within the specification
complexity context is how sensor selection for mobile robots affects the de-
scription lengths of the control procedures. In other words, we want to be
able to determine, in a rigorous manner, which observations to make. But,
we furthermore want to do this while simultaneously addressing a number
of other potentially interesting questions in robotics. By scanning the pro-
ceedings from the IEEE Conference on Robotics and Automation, a rough
taxonomy over five broad (not necessarily disjoint) areas of research can be
identified:
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(a) (b)

Fig. 2. In the left figure, the observer-based, single instruction, goal-finding pro-
cedure in Theorem 3 is depicted. The dotted line is the open-loop part of the
evolution, the dashed line defines the part where the observer is converging, and
the solid line is the last part of the evolution. The right figure shows the chained
extension of this instruction over a collection of landmarks, as in Theorem 4.

i. Electro-mechanical design of robot platforms, sensors, and actuators;
ii. The development of rational methods for collecting, compressing, and
analyzing sensory data;
iii. Deliberative, high-level mission planning;
iv. Control design for different classes of dynamical systems; and
v. The construction of appropriate software architectures and data struc-
tures for internal representations.

Since these areas of research have been developed somewhat in parallel, ques-
tions about software-hardware co-design have not been easy to address (or
even to raise). What is novel in this paper is thus a unified model that in-
corporates some aspects of all of these five research areas and allows us to
ask questions simultaneously about hardware design, mission planning, and
robot dynamics.

Let us assume that we have access to a collection of sensors ) (with a
corresponding H : X — Y for each Y € ), and a set of possible actuators
U. One could thus ask the following question

(P): Uerbrll,ill}ey {a_néig*|a'| log, (card(E))} ,
subject to the constraint that o makes the robot meet the given specifications.
By solving P we would thus solve sensor and actuator selection as well as
control design on both a low level (“What should the individual ¢’s look
like?”) and at a high level (“How should the strings of modes be chosen?”)
in a unified way. It should be noted that the solution is dependent on the
dynamics of the robot as well as on the particular task the robot is asked



12 Magnus Egerstedt

to carry out. It is furthermore clear that by solving P we directly address
questions residing in research areas i and iv in the previously established
taxonomy. Area iii is also touched upon since the open-loop component in
the mode description can be thought of as corresponding to setpoints, or
landmark locations, and by forming strings over X we thus provide a list of
landmarks for the robot to move between. Area ii is also addressed by solving
P through the construction of the output function H : X — Y. Sensor
fusion, virtual sensors, and feature extraction all correspond to designing
different output functions, and the only remaining area untouched by P is
thus area v. It can be argued that the use of motion description languages
has implications for the software architecture as well [18] (the programmer
should specify control triples directly), but we will let this aspect fall outside
the scope of this paper.

4.1 Preliminary Results

At the present, we do not have the general solution to P. However, initial
work has been conducted along these lines, and the findings are summarized
in the following paragraphs:

As already shown in Section 3, the use of the description length as a
measure of how complicated it is to specify control procedures can be put to
work for answering a question of fundamental significance in control theory,
namely that concerning the computational benefits of feedback. The reason
why this work is promising is twofold: First, the result can be thought of
as a special case of the sensor selection problem since it tells us whether or
not sensors should be used at all. Secondly, the many visible and successful
applications of feedback mechanisms at work testify to its effectiveness and
over the years a variety of arguments have been advanced showing why, in
particular settings, it is useful. The models commonly used bring to the fore
considerations of sensitivity, uncertainty, etc, and to this list we have now
added an argument for the usefulness of feedback in terms of the effect it has
on reducing the description lengths of the control procedures.

In [13] it was investigated how to choose the resolution and the scope
of the range sensors in order to manage the navigation task successfully at
the same time as the description lengths should be kept as short as possible.
The main theorem in that work states that if the robot dynamics is evolving
on a bounded lattice, where “k-sensors” can detect neighboring states of a
distance less than or equal to k£ from the present state of the system, then
there is an optimal choice, k*, of such a range-sensor in terms of the number
of bits needed for coding the control strategy. Furthermore, the number of
bits needed for coding the control procedure was found to be convex in k (over
the real numbers) which simplifies the design of optimization algorithms for
finding k* (over the positive integers) significantly, as shown in Figure 3.

This result sets the tone for the development of sensor selection algorithms
in more realistic settings. For instance, different choices of k¥ can be thought



Motion Description Languages for Multi-Modal Control in Robotics 13

of as different range sensors in robotics applications. A larger k, e.g. a laser
scanner, can thus be compared to short-range sensors such as infra-red sen-
sors, in terms of the specification complexity. The work also suggests that it
should be possible to optimize not only over k, but also over some parameter
that describes the accuracy and resolution of the actuators.

CL-OL ratio

Fig. 3. The ratio between the closed-loop and open-loop specification complexity
is shown as a function of k.

4.2 Further Issues

Previously we have seen that given o € X*, a total number of || log, (card(X))
bits are needed for specifying o. Now, if we assume that we have been able to
establish a probability distribution over X' we can use optimal coding schemes,
such as the Huffman code [19], for finding the shortest expected number of
bits I*(X) needed for coding an element drawn at random from X. Shannon’s
classic source coding theorem [23] tells us that H(X) < I*(X) < H(X) + 1,
where the entropy H(X) is given by

card(X)
H(Z)=— D pilog,pi.
i=1

Here the interpretation is that the control triple o; € X occurs with prob-
ability p;, and it should be noted that a probability distribution over X
corresponds to a specification of what modes are potentially useful.

But, to establish such a probability distribution over a structured set,
such as the set of modes, is not a trivial task, and four possible routes can
be identified:
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1. Derive potentially useful modes directly using hybrid control synthesis
tools [4,20];

2. Draw inspiration from existing, man-made multi-modal systems, e.g. au-
topilots for unmanned autonomous vehicles [24], or behaviors in behavior-
based robotics [2,7];

3. Observe how human operators instruct mobile robots, or how biological
systems are structured, and reconstruct the modes from experimental
data; and

4. Apply reinforcement learning techniques in order to find potentially useful
modes.

Once an appropriate model has been established for a given robot platform
equipped with a collection of sensors and actuators, and a coding strategy
has been decided on, we are ready to synthesize multi-modal control laws.
As already argued for extensively in this document, we want to keep the
mode descriptions short. In other words, assume that we have established a
probability distribution over X and let ¢ (o) denote the number of bits used
for coding o € X* under coding strategy C'. What one wants to achieve is
thus to find 6 € X™* that minimizes [ (o), while making sure that the system
meet the specifications, such as driving the robot between given points while
avoiding obstacles.
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