
This paper has been accepted by the 3rd IEEE Pacific-Rim Conf. on Multimedia, Taiwan, Dec., 2002 for publication.

MediaView: A Semantic View Mechanism for Multimedia Modeling

Qing Li 1, Jun Yang 1,2, Yueting Zhuang 2

1 City University of Hong Kong, HKSAR, China
{itqli, itjyang}@cityu.edu.hk

2 Zhejiang University, Hangzhou, China
yzhuang@cs.zju.edu.cn

ABSTRACT

The semantics of multimedia data, which features
context-dependency and media-independency, is of
vital importance to multimedia applications but
inadequately supported by the state-of-the-art database
technology. In this paper, we address this problem by
proposing MediaView as an extended object-oriented
view mechanism to bridge the “semantic gap” between
conventional databases and semantics-intensive
multimedia applications. This mechanism captures the
dynamic semantics of multimedia using a modeling
construct named media view, which formulates a
customized context where heterogeneous media objects
with similar/related semantics are characterized by
additional properties and user-defined semantic
relationships. View operators are proposed for the
manipulation and derivation of media views. The
feasibility of MediaView is validated by an
experimental implementation, and its usefulness and
elegancy is demonstrated by its application in a
multimodal information retrieval system.

1. INTRODUCTION

Owning to the expansion of the Web, recent years witness
a phenomenal growth of multimedia information in a
variety of types, such as images, videos, animations, etc.
The huge volume of multimedia data creates the challenge
of manipulating the data in an organized, efficient, and
scalable way, preferably, using a database approach. In
the database community, however, although a large
number of publications have been devoted to the data
model, presentation, indexing, and query of multimedia
data (e.g., [2], [4]), relatively small progress has been
achieved regarding the semantic modeling of multimedia,
which is of primary importance to various multimedia
applications and systems. A typical multimedia
application, say, authoring of electronic lecture notes, is
more likely to query against the semantic content of data,
e.g., “find an illustration of the ANSI/SPARC three-
schema database architecture”, rather than to query
against the primitive features of data, e.g., “find all the
images in JPEG format with size above 200KB”.
Therefore, it is critical for a database to model the

semantics of multimedia data in order to effectively
support the functionality of semantics-intensive
multimedia applications. Unfortunately, most existing
data models fail to capture precisely the semantic aspect
of multimedia data, which features the following two
unique properties:
• Context-dependency. Semantics is not a static and
inherent property of a media object1. Rather, the semantic
meaning of a media object is influenced by the application
(or user) that manipulates the object, the role it plays, and
other objects that interact with it, which constitutes a
specific context around this object. As an example,
consider the interpretations of van Gogh’s famous
painting “Sunflower”, the leftmost image in both Fig.1
and Fig.2. When it is placed with the other two images in
Fig.1, which are also the paintings of van Gogh, the
meaning of “van Gogh’s paintings” is suggested. When
the same image is interpreted in the context of Fig.2,
however, the meaning of “flower” is manifest. Moreover,
a media object may acquire context-specific properties
when interpreted in a certain context. For example, as a
painting, the picture “Sunflower” can be described by the
“artist” and “year”, whereas as a flower it can have
attribute like “category”.

Fig.1: “Sunflower” in the context of van Gogh’s paintings

Fig.2: “Sunflower in the context of flower

• Media-independency. Media objects of different
types of modality (i.e., multimodal objects) may suggest

1In this paper, a media object refers to an object of any type of
modality, such as an image, a video clip, or a textual document.

Page 1

mailto:itjyang}@cityu.edu.hk
mailto:yzhuang@cs.zjue.du.cn

the similar/related semantic meaning. For instance, the
concept of “ANSI/SPARC three-schema architecture” can
be expressed by a textual document, an image illustration,
a PowerPoint slide, or a combination of them.

The dynamic nature of multimedia is fundamentally
different from that of the traditional alphanumeric data,
whose semantics is explicit, unique, and self-contained.
This large distinction explains the failing of applying
traditional data models to characterize the semantic aspect
of multimedia data. For example, in a conventional
(strongly typed) object-oriented model, each object
statically belongs to exactly one type, which prescribes
the attributes and behaviors of the object. This obviously
conflicts with the context-dependent nature of a media
object, which needs to switch dynamically among various
types depending on specific contexts. Moreover, a
conventional object model can hardly model the media-
independency nature, which requires media objects of
different types to have some attributes and methods
defined in common.

The incapability of semantic multimedia modeling
severely undermines the usefulness of a database in
supporting semantics-intensive multimedia applications.
This problem, referred to as the “semantic gap” between
databases and multimedia applications, constitutes the
major motivation of MediaView as an extended object-
oriented view mechanism to be presented in this paper. As
illustrated in Fig.3, MediaView bridges this “semantic
gap” by introducing above the traditional three-schema
database architecture an additional layer constituted by a
set of modeling constructs named media views. Each
media view, defined as an extended object view,
formulates a customized context in which the dynamic
and elusive semantics of media objects are properly
interpreted.

External Schema

media
view 1

Internal Schema

media
view 2

media
view n

...

Object-oriented Database

Multimedia Applications

Conceptual Schema

MediaView
Mechanism

...

Fig.3: MediaView as a “semantic bridge”

To cope with the dynamic semantics of multimedia,
MediaView builds the following extensions to the
traditional object-oriented view mechanisms (e.g., [1], [6],

[7]): (1) A media view can accommodate heterogeneous
media objects (i.e., objects belonging to different classes)
as its members. (2) Objects included as the members of a
media view are endowed with additional properties that
are specific to that media view. (3) Objects in a media
view are interconnected by user-defined semantic
relationships. A media view serves as a container that
accommodates semantically related objects (typically
heterogeneous) and describe them by additional properties
and semantic relationships. The basic operations of media
views, such as creation, deletion, and manipulation, are
provided as a set of view operators. We demonstrate a
real-world application, namely multimodal information
retrieval, can be elegantly modeled by media views with
its functionality adequately supported by view operators.
An experimental implementation of MediaView is
developed on top of an object-oriented database system.

The rest of this paper is organized as follows. In
Section 2, we describe the fundamentals of the MediaView
mechanism and compare it with other related works. We
demonstrate the application of MediaView in a
multimodal information retrieval system in Section 3.
Section 4 describes the experimental implementation
strategy of MediaView. We conclude the paper and
discuss the future work in Section 5.

2. FUNDAMENTALS OF MEDIAVIEW

In this section, we introduce the basic concepts of media
view as well as the view operators devised for its
manipulation. The relationships between media view and
existing modeling constructs are discussed as well.

2.1 Basic concepts

MediaView is essentially an extension built on top of a
standard object-oriented data model. In an object model,
real-world entities are modeled as objects. Each object is
identified by a system-assigned identifier, and has a set of
attributes and methods that describe the structural and
behavioral properties of the corresponding entity. Objects
with the same attributes and methods are clustered into
classes. The definitions of class and other related concepts
are given below:

Definition 1. A class named as Ci is represented as a tuple of
two elements:

Ci = <Oi, Pi>
1. Oi is the extent of Ci,which is a set of objects that belong to

Ci. Each object o∈Oi is called an instance of Ci .
2. Pi is a set of properties defined by Ci. Each property p∈Pi

is an attribute or a method that can be applied to all the
instances of Ci.

Page 2

3. For two class C1 and C2, C1 is called a subclass of C2 (or
C2 is a superclass of C1) if (1) P1 P2 and (2) O1 O2. If
C1 is a subclass of C2, we also say that there is an IS-A
relationship from C1 to C2 .

⊇ ⊆

Adopting object model has two advantages from the

perspective of our work: (1) compared with other models
(e.g., relational model), an object model has better
modeling capability by capturing not only the structural
but also the behavioral properties of an object; (2) each
object has a unique identifier, such that its identity can be
maintained when it is included into multiple contexts.
Please note that this paper does not intend to propose a
more powerful object model. Actually, the object model
defined above is a basic subset (the core) of most existing
object models [3], and therefore our MediaView
mechanism is implementable on most existing object-
oriented database systems.

The formal definition of media view as an extended
object-oriented view is given as follows:

Definition 2: A media view named as MVi is represented as a
tuple of four elements:

MVi= <Mi, Pi
v, Pim, Ri,>

1. Mi is a set of objects that are included into MVi as its

members. Each object o∈Mi belongs to a certain source
class, and different members of MVi may belong to different
source classes.

2. Pi
v is a set of view-level properties (attributes and

methods), which are applied on MVi itself.

keywords

TextDocument

Image
size

color-histogram

VideoClip
motion-vector

length

JPEG

compress-rate

raw-date

MediaObject

Speech

speaker

Bitmap

color-depth

description
format

Slide

sp
ee

ch
-s

lid
etext-illustration

(b) media view(a) classes

DBMS
namedefinition

view-level
property

member-level
property

Legend

IS-A
relationship

object

class

media
view semantic

relationship

data-model

Fig.4: Examples of classes and a media view

3. Pi
m is a set of member-level properties (attributes and

methods), which are applied on all the members of MVi.
4. Ri is a set of relationships, and each r∈Ri is in the form of

<oj, ok, t>, which denotes a relationship of type t between
member oj and ok in MVi.

The relationship between classes and a media view is

exemplified in Fig.4. As shown in Fig.4(a), a set of
classes is defined to model media objects of different
types, such as Image, VideoClip, and Speech, which are
connected into the conceptual schema through IS-A
relationships. From the properties defined in these classes,
one can see that they emphasize on the primitive features
of media objects, such as the color histogram of images,
keywords of text document, which have uniform
interpretation irrespective of specific contexts. Although
such emphasis (on primitive features) is not mandatory,
by doing so the conceptual schema is able to provide an
objective, context-independent foundation based on which
a variety of customized contexts can be formulated.

Fig.4(b) illustrates an example media view called
DBMS. Each member of this media view is a media object
that is about a specific DBMS product, such as a JPEG
image illustrating a DBMS, a textual document about a
DBMS, a slide as the demonstration of a DBMS, etc. Note
that all these objects are not created by this media view,
but are selected from heterogeneous source classes in
Fig.4(a). However, these objects obtain a set of new

Page 3

(member-level) properties when they become the
members of DBMS, such as the name of the DBMS
product each of them represents. Different from their
properties defined in respective source classes, their
properties in the media view focus on the semantics
suggested by media objects. Moreover, a view-level
property, definition, is used to describe the global property
of the media view itself (i.e., the definition of a DBMS).
Different types of semantic relationships exist between the
view members. For example, there is a “speech-slide”
relationship between the Speech object and the Slide
object, denoting that the speech accompanies the slide.

3.2 Operators over media views

To support manipulations on media views, we devise a set
of view operators, whose definitions 2 are presented as
follows.
1. CREATE-MV (N: mv-name, VP: set-of-property-ref,

MP: set-of-property-ref): mv-ref. This operator
creates a media view (MV) named as N, which takes
the properties in VP as its view-level properties, and
those in MP as its member-level properties. When
executed successfully, it returns the reference to the
created media view, which has no members and
relationships initially.

2. DELETE-MV (MV: mv-ref). This operator deletes a
media view specified by the reference MV from the
database. Along with the deletion of MV, all its
members are excluded from MV with their properties
(value) defined in MV removed. All the relationships
in MV are also deleted. Note that the member itself as
an instance of its source class is not deleted from the
database.

3. GET-ALL-MV():set-of-mv-ref. This operator retrieves
all the media views currently in the database. The
return value is a set of references to these media
views.

4. ADD-MEMBER(MV: mv-ref, O: object-ref). This
operator adds the object referred by O as a member of
the media view referred by MV. All the member-level
properties for O are set to their default values.

5. REMOVE-MEMBER(MV: mv-ref, O: object-ref).
This operator excludes the object O from the media
view MV. All the relationships and properties of O in
MV are also deleted.

2 In the definition of view operators, the suffix “-ref” represents
the reference to object, which is actually a variable holding the
Oid of an object. For example, mv-ref is the reference to a media
view, relationship-ref is the reference to a relationship, etc. As
will be seen in Section 4, media views, properties, relationships
are all implemented as objects.

6. ADD-RELATIONSHIP(MV: mv-ref, O1: object-ref,
O2: object-ref, R: relationship-type): relationship-ref.
This operator establishes a relationship of type R
between objects O1 and O2, which are the members
of the media view MV. (In fact, R is the name of a
class and the relationship is an instance of this class,
which refers to the two associated objects as its
properties.) If the operator is applied successfully, the
reference to the relationship object is returned.

7. REMOVE-RELATIONSHIP(MV: mv-ref, O1: object-
ref, O2: object-ref[, R: relationship]). If the last
argument is not specified, this operator removes all
their relationship(s) between objects O1 and O2 in
the media view MV. Otherwise, it only deletes the
relationships of the type specified by R.

8. GET-ALL-MEMBER (MV: mv-ref): set-of-object-ref.
This operator retrieves all the (heterogeneous) objects
as the members of the media view MV.

9. HAS-MEMBER(MV: mv-ref, O: object-ref): boolean.
This operator tests if object O is a member of the
media view MV.

10. GET-RELATED-MEMBER (MV: mv-ref, O: object-
ref[, R: relationship]): set-of-object-ref. This operator
returns all the objects that have relationship of any
type (if the last argument is absent) or of type R (if
the last argument is given) with object O in the media
view MV.

11. GET-ALL-RELATIONSHIP (MV: mv-ref): set-of-
relationship-ref. This operator retrieves all the
relationships in the media view MV.

12. GET-VIEW-PROP (MV: mv-ref, P: property-ref):
value. This operator retrieves the value of the view-
level property P of media view MV.

13. SET-VIEW-PROP (MV: mv-ref, P: property-ref, V:
value). This operator sets the value of the view-level
property P of media view MV to the value specified
by V.

14. GET-MEMBER-PROP (MV: mv-ref, O: object-ref, P:
property-ref, V: value). This operator retrieves the
value of the member-level property P of object O in
media view MV.

15. SET-MEMBER-PROP (MV: mv-ref, O: object-ref, P:
property-ref, V: value). This operator sets the value of
the member-level property P of object O in media
view MV to the value specified by V.

The set of view operators defined above provides the
basic functions of media views, while more sophisticated
operations can be implemented as a combination of these
basic operators. For example, a search for objects that are
related with a specific object in any media view can be
handled by applying GET-ALL-MV() and GET-
RELATED-MEMBER() in combination.

Page 4

2.3. Discussion and comparison to related work

From the above descriptions, one can easily see a
resemblance between a media view and some existing
constructs in an object model, namely class, object view,
and composite object. In the following, we compare media
views with each of these constructs in order to clarify the
position of our work in the framework of object models.
• Class. Similar to the extent of a class, a media view
also contains a set of objects as its members, and it can
apply (member-level) properties on them to describe their
structural and behavioral properties. However, a media
view differs from a class in several aspects, particular in
that (1) it can accommodate heterogeneous obejcts,
whereas a class only holds a set of uniform objects; (2) a
media view can only dynamically include/exclude objects
that are instances of source class(es), and does not create
new objects; (3) while an object must belong to exactly
one class, it can be included into arbitrary number of
media views; (4) a media view models the semantic
relationships and consequently the interaction between its
members, which is not supported by class; (5) the global
feature of a media view is captured by its view-level
properties, another feature not supported by class.
• Object view. In the past decade, there exist numerous
proposals on object-oriented view mechanisms (e.g., [1],
[6], and [7]). Generally, an object view can be regarded as
a virtual class derived by a query over classes [1]. In fact,
an object view is almost a class except that its instances
are selected from the instances of other classes, and in this
regard it is closer (compared with class) to our media
view. However, except point (2), the rest statements on
the difference between a media view and a class hold for a
conventional object view as well. Furthermore, with the
ability of assigning new properties to its members, a
media view is more powerful than a conventional view,
whose properties are inherited or derived from classes
(e.g., deriving the area of a circle object from its diameter).

Admittedly, with these new features added, a media
view can be hardly classified as an object view (and
MediaView is no longer just a view mechanism) from a
conventional point of view, although our initial thought
was to adapt an object view for multimedia data. In this
paper, we stick to the term “view” on the ground that (a)
structurally, media views sit in-between the conceptual
schema and the applications, the position where views are
used to be, and (b) functionally, they are used to provide
customized view of the data for a certain application.
• Composite object. From another perspective, a
media view can be regarded as an extended composite
object, which maintains two lists of object references—
one list keeps the members of the media view, and the
other keeps all the relationships (which are implemented
as objects) between members. As a composite object, a
media view naturally allows dynamic insertion/removal of

its members and relationships. The view-level properties
correspond to the properties of the composite object. As
the major difference between them, however, a media
view can define properties for its members, whereas a
composite object cannot.

Essentially, a media view can be regarded as a
“hybrid” of a class (or an object view as a virtual class)
and a composite object. Consequently, it benefits from the
advantages of both constructs, i.e., the modeling power of
a class, which allows it to endow the objects with new
properties, as well as the flexibility of a composite object
(e.g., heterogeneous membership) indispensable for
modeling the dynamic nature of multimedia.

3. REAL-WORLD APPLICATION:
MULTIMODAL INFORMATION RETRIEVAL

To show the usefulness and elegancy of MediaView, we
introduce a real-world application in which media views
are found to be a natural and suitable modeling construct.
The example application comes from our on-going
research project on a multimodal information retrieval
system, Octopus [8]. In this section, we firstly describe
several specific media views created as the data model of
Octopus, and then demonstrate how a variety of retrieval
functions can be implemented using view operators.

3.1. Data model

Octopus is proposed to provide search functionality in
multimedia repositories ranging from web to digital
libraries, where data are typically of multiple types of
modality. The basic search paradigm supported by
Octopus is query-by-example, that is, a user forms a query
by designating a media object as the sample object and the
system retrieves all the media objects relevant to it. For
example, using the poster (as an image) of the movie
“Harry Potter” as the sample, we expect to receive media
objects such as a textual introduction of the movie, a
“highlight” video clip, and the music of the movie.
Essential to such a multimodal retrieval system is the
relevance defined between any two media objects, which
is evaluated from the following three perspectives:
1. User perceptions. Two media objects are regarded as

relevant if users have the same/similar interpretation
of them, e.g., annotating them with the same
keywords.

2. Contextual relationship. Media objects that are
spatially adjacent or connected by hyperlinks are
usually relevant to each other.

3. Low-level features. Low-level features (e.g., color
histogram for images) can be extracted from media
objects to describe their visual/aural characteristics.

Page 5

Intuitively, media objects are considered relevant if
they possess highly similar low-level features.

As shown in Fig.5, a media view called KB is created

to model the relevance between any two media objects in
the database of Octopus. The members of KB are media
objects such as images, videos, audios, which are
modelled as instances of heterogeneous source classes
(see Fig.4). Three types of relationships (perceptual,
contextual, and feature) are defined to represent the inter-
object relevance from the aforementioned three
perspectives. A weight can be associated with each
relationship as its property to indicate the strength of the
relevance.

...

KB

description

Result(3)

...... Result(2)

......Result(1)

score
feedback

query
result-type
sample-obj

...

text

audio

video

image

lengend
perceptual
relationship
contextual
relationship
feature
relationship

Fig.5: Media views created for Octopus

KB provides an integrated knowledge base for

evaluating the relevance among media objects, based on
which user queries can be processed by analysing the
relationships contained in it (see below). For each query, a
media view named Result(n) is created to accommodate
the results of the query, where n is the serial number. The
global aspect of the query is described by its view-level
properties, such as the type of results, the sample object
used, while member-level properties are assigned on each
object to describe its characteristics as a query result, such
as its relevance score, and users’ feedback opinion
towards it (relevant, neutral, or irrelevant).

3.2. Implementation of retrieval-related functions

Octopus provides a variety of retrieval-related functions,
such as search, relevance feedback, navigation, learning,
all of which are realized by applying view operators over
the media view KB and Result(n), as shown below.

• Query-by-example (QBE). The media objects
relevant to a sample object specified in a user query can
be found by “propagation” via the relationships in the
media view KB. Starting from the sample object, we
traverse to other media objects in KB through
relationships (up to a specific number of iterations) and
identify these objects as relevant results. The pseudo-code
describing this process is given below.

S: a set of objects as the query result
K: the number of iterations for propagation
os: the sample object
1. S:= {os}
2. For n= 1 to K
3. T: = {}
4. For each object o in S
5. T := T∪GET-RELATED-MEMBER(“KB”, o)
6. S := S∪T

We can designate the type(s) of relationship used in
propagation by specifying it in GET-RELATED-
MEMBER (Step 5). For example, if the feature
relationship is unreliable under certain situations, we can
specify the perceptual and contextual relationships for the
search of relevant objects. Moreover, the modality of
query results can be controlled by distinguishing the
source class of each object (i.e., image, videos, etc). All
the retrieval results, together with the user’s possible
feedback opinions towards them, are stored in the media
view Result(n) created for the query.

• Navigation. As shown by the code below, navigation
among the media objects can be facilitated by various
relationships in KB, which serve as the natural routes for
navigating from one media object to related objects.

1. Set o as the object currently been viewed by the user
2. S := GET-RELATED-MEMBER(“KB”, o)
3. Present all the objects in S to the user, from which the

user can choose an interested object and navigate to it
4. Go to Step 1

• Relevance feedback. Relevance feedback is a
mechanism used to refine the retrieval results by giving
evaluations to the previously retrieved results, typically,
by designating some of the results as relevant or irrelevant
examples. The pseudo-code below presents a simple
algorithm for relevance feedback. Similar to the algorithm
for the search function, we perform propagation based on
relevant and irrelevant examples respectively, resulting in
a set of “positive” results and a set of “negative” results.
The final results are obtained by removing the “negative”
results from the “positive” ones.

Page 6

S: a set of objects as the query results
R: a set of relevant examples
N: a set of irrelevant examples
K: the number of iterations for propagation
1. For n=1 to K
2. T: = {}
3. For each object o in R
4. T := T∪GET-RELATED-MEMBER(“KB”, o)
5. R := R∪T
6. T := {}
7. For each object o in N
8. T := T∪GET-RELATED-MEMBER(“KB”, o)
9. N := N∪T
10. S := R-N

• Learning from feedbacks. In the previous two
examples, retrieval results are obtained based on the
knowledge contained in KB. Chances are that new
knowledge can be derived from user feedback information
recorded in Result(n) and incorporated into KB. The
following algorithm shows a simple and intuitive way of
doing that: if two objects are relevant examples for the
same query (i.e., they appear in the same Result(n) with
property feedback set as “relevant”), we add a perceptual
relationship between them in KB. More sophisticated
techniques (e.g., data mining) can be used for knowledge
discovery based on media views, which are nevertheless
out of the scope of this paper.

Result(n) (n=1,…,N): a set of media views for query results

1. S: = GET-ALL-MEMBER(“KB”)
2. For any two objects oi and oj in S
3. For n = 1 to N
4. mv := Result(n)
5. If HAS-MEMBER(mv,oi)
and HAS-MEMBER(mv,oi)
and GET-MEMBER-PROP(mv, oi, “feedback”)=“Relevant”
and GET-MEMBER-PROP(mv, oj, “feedback”)=“Relevant”

6. ADD-RELATIONSHIP(“KB”,oi,oj, “perceptual”)

4. AN EXPERIMENTAL IMPLEMTATION

We have come up with an implementation strategy for
MediaView, using which an experimental prototype has
been developed on top of an object-oriented database
system, NeoAccess [5]. Specifically, the concept of media
view is implemented based on the notion of “meta view”
and “shadow class”.

NeoAccess is an object-oriented database
management system with a C++ programming language
interface. The library of NeoAccess introduces a
CNeoPersist class, which defines all the basic properties
and functions needed for persistent storage of objects.
Persistent classes can be defined by inheriting from
CNeoPersist using the standard grammar for C++ class
definition.

As mentioned in Section 2.3, a media view has the
characteristics of both a class and a composite object.
Since a composite object does not support properties of its
constituents, while a class cannot model the interactions
(relationships) among its instances, a simple idea of
implementing a media view as either of them does not
work. Rather, a media view is implemented as a “hybrid”
of the both constructs. On one hand, all the media views
are created as instances of a common class called Meta-
View, and on the other hand each of them is associated
with a “shadow class” that models the properties of its
members.

Fig.6 illustrates the implementation strategy of the
media views used in the multimodal retrieval application
discussed in Section 3. Meta-View is inherited from the
class CNeoPersist as a built-in class, from which all the
media views are created as its instances. Meta-View
specifies the common data structures of media views, and
provides all the basic functions in the form of view
operators (cf. Section 2.2). Another built-in class,
Relationship, is defined to represent the inter-object
relationships and can be customized by inheritance for
modeling different types of relationships. Each instance of
Relationship or its subclasses refers to two object
identifiers (i.e., Oids) as its properties.

CNeoPersist

RelationshipMeta-View

built-in
classes

(NeoAccess definition)

Shadow-
KB

Shawdow-
Result

User-
Relationship

Structure-
Relationship

Feature-
Relationship

Legend
IS-A
relationship

class

media
view

instance-of
relationship

KBResult

Fig.6: Implementation strategy of MediaView

Essential to the implementation of media view is the

appropriate data structure chosen to meet its internal
complexity (i.e., the data structure of Meta-View). In our
approach, the members of a media view are maintained by
a list of Oids (of its member objects), and the relationships
are kept in another list containing instances of the built-in
class Relationship or its subclasses. Constraints are
enforced to guarantee the data integrity during the
evolution of members and relationships, e.g., when a
member is removed, its involved relationships are also
removed.

While the view-level properties of a media view is
easily implemented as a list of <Property, Value> pairs,

Page 7

difficulty is encountered when it comes to the modeling of
member-level properties, which vary from one media
view to another. Since a composite object is not allowed
to have properties for its members, we introduce a
“shadow class” for each media view to model the
properties of its members. Specifically, when a media
view is created, a corresponding shadow class is defined
implicitly, whose properties are set equal to the member-
level properties of the media view. Furthermore, for each
object identified as the member of the media view, a
“shadow object” is created as the instance of the
corresponding shadow class. All the accesses (read and
write) to the properties of view members are automatically
“forwarded” to their shadow objects. The removal of a
view member will lead to the deletion of its shadow object.
The mapping between an object as a view member and its
shadow object (denoted by shadow-Oid) is realized by a
list of <Oid, shadow-Oid> pairs maintained by the media
view. All the manipulations of shadow classes and
shadow objects are conducted in a user-transparent
manner.

5. CONCLUSIONS AND FUTURE WORK

The MediaView mechanism presented in this paper aims
at building a bridge across the “semantic gap” between
conventional databases and multimedia applications, the
former of which are inadequate to capture the dynamic
semantics of multimedia, whereas data semantics plays a
key role in the latter. This mechanism is based on the
modeling construct of media view, which formulates a
customized context where heterogeneous media objects
with similar/related semantics are characterized by
additional properties and semantic relationships. View
operators have been developed for the derivation and
manipulation of media views. The implementation
strategy of MediaView as well as its application in a
multimodal information retrieval system has been
described to demonstrate its feasibility and usefulness.

As the current emphasis of MediaView is mainly on
modeling capability, further issues regarding its efficiency
need to be investigated. Efficient data structure and
indexing strategy for media views will be developed in
favour of the frequent operations, such as retrieving all the
objects related to a specific one in a media view. Another
promising research direction is to apply data mining
technology. Despite the dynamic and subjective aspect of
multimedia semantics, we believe that many informative
patterns revealing the “common knowledge” of
multimedia data can be discovered from media views
through mining, such as the inter-object relevance derived
from user feedbacks in the multimodal retrieval
application (see Section 3.2). Such common knowledge
can help improve the semantic characterization of

multimedia and therefore better support multimedia
applications.

6. REFERENCE

[1] S. Abiteboul and A. Bonner, “Objects and Views,”
Proc. of ACM Conf. on Management of Data, pp.
238-247, 1991.

[2] P. Apers, H. Blanken, and M. Houtsma, (eds.),
Multimedia Databases in Perspective, Springer,
London, 1997.

[3] W. Kim, “Object-Oriented Database Systems:
Promises, Reality, and Future,” Proc. of 19th Very
Large Database, pp. 676-687, 1993.

[4] S.M. Chuang, (eds.) Multimedia Information Storage
and Management, Kluwer Academic Publishers,
USA, 1996.

[5] NeoAccess. http://www.neologic.com

[6] E.A. Rundensteiner, “MultiView: A Methodology for
Supporting Multiple Views in Object-Oriented
Databases,” Proc. of 18th Int. Conf. on Very Large
Database, pp. 187-198, 1992.

[7] M.H. Scholl, C. Lassch, and M. Tresch, “Updateable
Views in Object-Oriented Databases,” Proc. of 2nd
DOOD Conf, Germany, 1991.

[8] J. Yang, Q. Li, and Y.T. Zhuang, “Octopus:
Aggressive Search of Multi-Modality Data Using
Multifaceted Knowledge Base,” Proc. 11th Int. Conf.
on World Wide Web, pp. 54-64, 2002.

Page 8

http://www.neologic.com/

