Skip to main content

Pregroups: Models and Grammars

  • Conference paper
  • First Online:
Relational Methods in Computer Science (RelMiCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2561))

Included in the following conference series:

  • 342 Accesses

Abstract

Pregroups, introduced in Lambek [12], are a generalization of partially ordered groups. In [5], we have proven several theorems on pregroups and grammars based on the calculus of free pregroups, in particular, the weak equivalence of these grammars and context-free grammars. In the present paper, we obtain further results of that kind. We consider left and right pregroups, study concrete left and right pregroups consisting of monotone functions on a poset and of monotone relations on a poset, and adjust the equivalence theorem to grammars based on left (right) pregroups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. AndrĂ©ka and S. Mikulaƛ, Lambek calculus and its relational semantics: completeness and incompleteness, Journal of Logic, Language and Information 3 (1994), 1–37.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Bargelli and J. Lambek, An algebraic approach to French sentence structure, in [9], 62–78.

    Google Scholar 

  3. W. Buszkowski, Mathematical Linguistics and Proof Theory, in [17], 683–736.

    Google Scholar 

  4. W. Buszkowski, Algebraic structures in categorial grammar, Theoretical Computer Science 199 (1998), 5–24.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Buszkowski, Lambek grammars based on pregroups, in [9], 95–109.

    Google Scholar 

  6. W. Buszkowski and M. KoƂowska-Gawiejnowicz, Representation of residuated semigroups in some algebras of relations. (The method of canonical models.), Fundamenta Informaticé 31 (1997), 1–12.

    MATH  Google Scholar 

  7. C. Casadio and J. Lambek, An algebraic analysis of clitic pronouns in Italian, in [9], 110–124.

    Google Scholar 

  8. L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.

    MATH  Google Scholar 

  9. P. de Groote, G. Morrill and C. Retoré (eds.), Logical Aspects of Computational Linguistics, LNAI 2099, Springer, Berlin, 2001.

    MATH  Google Scholar 

  10. C. Hoare and H. Jifeng, The weakest prespecification, Fundamenta Informaticé 9 (1986), 51–84, 217-252.

    MATH  Google Scholar 

  11. J. Lambek, The mathematics of sentence structure, American Mathematical Monthly 65 (1958), 154–170.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Lambek, Type grammars revisited, in [13], 1–27.

    Google Scholar 

  13. A. Lecomte, F. Lamarche and G. Perrier (eds.), Logical Aspects of Computational Linguistics, LNAI 1582, Springer, Berlin, 1999.

    MATH  Google Scholar 

  14. M. Moortgat, Categorial Investigations. Logical and Linguistic Aspects of the Lambek Calculus, Foris, Dordrecht, 1988.

    Google Scholar 

  15. M. Moortgat, Categorial Type Logics, in [17], 93–177.

    Google Scholar 

  16. E. OrƂowska and A. SzaƂas (eds.), Relational Methods for Computer Science Applications, Physica Verlag, Heidelberg, 2001.

    MATH  Google Scholar 

  17. J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier, Amsterdam, The MIT Press, Cambridge Mass., 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buszkowski, W. (2002). Pregroups: Models and Grammars. In: de Swart, H.C.M. (eds) Relational Methods in Computer Science. RelMiCS 2001. Lecture Notes in Computer Science, vol 2561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36280-0_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-36280-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00315-1

  • Online ISBN: 978-3-540-36280-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics