Skip to main content

The Complexity of Approximating the Oriented Diameter of Chordal Graphs

Extended Abstract

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2573))

Abstract

The oriented diameter of a (undirected) graph G is the smallest diameter among all the diameters of strongly connected orientations of G. We study algorithmic aspects of determining the oriented diameter of a chordal graph. We — give a linear time algorithm such that, for a given chordal graph G, either concludes that there is no strongly connected orientation of G, or finds a strongly connected orientation of G with diameter at most twice the diameter of G plus one; — prove that the corresponding decision problem remains NP-complete even when restricted to a small subclass of chordal graphs called split graphs; — show that unless P = NP, there is neither a polynomial-time absolute approximation algorithm nor an α-approximation (for every α< 3/2 ) algorithm computing oriented diameter of a chordal graph.

The work of IR and MM is partially supported by FONDAP on Applied Mathematics, Fondecyt 1020611 and Fondecyt 1010442. Part of this job was done while FVF was a postdoc at CMM, supported by FONDAP. FVF acknowledges support by EC contract IST-1999-14186, Project ALCOM-FT (Algorithms and Complexity - Future Technologies).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bang-Jensen and G. Gutin, Digraphs, Springer-Verlag London Ltd., London, 2001. Theory, algorithms and applications.

    MATH  Google Scholar 

  2. A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 1999.

    Google Scholar 

  3. F. R. K. Chung, Diameters of communication networks, in Mathematics of information processing (Louisville, Ky., 1984), Amer. Math. Soc., Providence, R.I., 1986, pp. 1–18.

    Google Scholar 

  4. F. R. K. Chung, M. R. Garey, and R. E. Tarjan, Strongly connected orientations of mixed multigraphs, Networks, 15 (1985), pp. 477–484.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Chvátal and C. Thomassen, Distances in orientations of graphs, J. Combinatorial Theory Ser. B, 24 (1978), pp. 61–75.

    Article  MathSciNet  Google Scholar 

  6. G. Dirac, On rigid circuit graphs, Abhandl. Math. Sem. d. Univ. Hamburg, 25 (1961), pp. 71–76.

    MATH  MathSciNet  Google Scholar 

  7. P. Fraigniaud and E. Lazard, Methods and problems of communication in usual networks, Discrete Appl. Math., 53 (1994), pp. 79–133.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    MATH  Google Scholar 

  9. G. Gutin, Minimizing and maximizing the diameter in orientations of graphs, Graphs Combin., 10 (1994), pp. 225–230.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, A survey of gossiping and broadcasting in communication networks, Networks, 18 (1988), pp. 319–349.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. M. Koh and E. G. Tay, On optimal orientations of Cartesian products of even cycles, Networks, 32 (1998), pp. 299–306.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.-C. Konig, D. W. Krumme, and E. Lazard, Diameter-preserving orientations of the torus, Networks, 32 (1998), pp. 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Lovász, Coverings and coloring of hypergraphs, in Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1973), Utilitas Math., Winnipeg, Man., 1973, pp. 3–12.

    Google Scholar 

  14. H. E. Robbins, A theorem on graphs with an application to a problem of traffic control, Amer. Math. Monthly, 46 (1939), pp. 281–283.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. S. Roberts, Graph theory and its applications to problems of society, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1978.

    Google Scholar 

  16. F. S. Roberts and Y. Xu, On the optimal strongly connected orientations of city street graphs. I. Large grids, SIAM J. Discrete Math., 1 (1988), pp. 199–222.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Šoltés, Orientations of graphs minimizing the radius or the diameter, Math. Slovaca, 36 (1986), pp. 289–296.

    MathSciNet  MATH  Google Scholar 

  19. R. E. Tarjan, Depth first search and linear graph algorithms, SIAM Journal on Computing, 1 (1972), pp. 146–160.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Matamala, M., Rapaport, I. (2002). The Complexity of Approximating the Oriented Diameter of Chordal Graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds) Graph-Theoretic Concepts in Computer Science. WG 2002. Lecture Notes in Computer Science, vol 2573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36379-3_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-36379-3_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00331-1

  • Online ISBN: 978-3-540-36379-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics