
Datalog with Constraints: A Foundation for
Trust Management Languages

Ninghui Li and John C. Mitchell

Department of Computer Science, Stanford University
Gates 4B, Stanford, CA 94305-9045

{ninghui.li, jcm}@cs.stanford.edu

Abstract. Trust management (TM) is a promising approach for au-
thorization and access control in distributed systems, based on signed
distributed policy statements expressed in a policy language. Although
several TM languages are semantically equivalent to subsets of Datalog,
Datalog is not sufficiently expressive for fine-grained control of struc-
tured resources. We define the class of linearly decomposable unary con-
straint domains, prove that Datalog extended with constraints in any
combination of such constraint domains is tractable, and show that per-
missions associated with structured resources fall into this class. We also
present a concrete declarative TM language, RT C

1 , based on constraint
Datalog, and use constraint Datalog to analyze another TM system,
KeyNote, which turns out to be less expressive than RT C

1 in signifi-
cant respects, yet less tractable in the worst case. Although constraint
Datalog has been studied in the context of constraint databases, TM
applications involve different kinds of constraint domains and have dif-
ferent computational complexity requirements.

1 Introduction

One main goal of computer security is to ensure that access to resources is
restricted to parties with legitimate access permissions. Traditional access control
mechanisms process requests from authenticated users of an operating system
or a database system and make authorization decisions based on the identity of
the requester. However, in decentralized, open, distributed systems, the resource
owner and the requester often are unknown to one another, and access control
based on identity may be ineffective. In the “trust-management” approach to
distributed authorization, articulated in [4], access control decisions are based
on policy statements made by multiple principals. Some statements are digitally
signed to ensure their authenticity and integrity; these are called credentials.
Some statements may be stored in local trusted storage and do not need to
signed, we call these access rules. In a TM scenario, a requester submits a request,
possibly supported by a set of credentials issued (signed) by other parties, to an
authorizer, who specifies access rules governing access to the requested resources.
The authorizer then decides whether to authorize this request by answering
the proof-of-compliance question: “Do the access rules and credentials authorize

the request?” Digitally signed credentials document authenticated attributes of
entities. These attributes may be group membership, membership in a role within
an organization, or being delegated of a permission or role. Access rules can
specify what attributes are required to access a resource and other conditions of
access, such as time or auditing requirements. There are good reasons to prefer
TM languages that are declarative and have a formal foundation.

Several TM languages are based on Datalog, e.g., Delegation Logic [14, 13],
the RT (Role-based Trust-management) framework [15, 16], SD3 (Secure Dy-
namically Distributed Datalog) [10], and Binder [6]. However, Datalog has
limitations as a foundation of TM languages. One significant limitation is the
inability to describe structured resources. For example, a project manager may
want to grant permission to read the entire document tree under a given URI,
assign responsibility for associating public keys with all DNS names in a given
domain, restrict network connections to port numbers in a limited range, or ap-
prove routine transactions with value below an upper limit. The permission to
access all files and subdirectories under a directory “/pub/rt” represents permis-
sions to access a potentially infinite set of resources that seems most naturally
expressed using a logic programming language with function symbols. However,
the tractability of Datalog is a direct consequence of the absence of function
symbols. Previous TM languages that can express certain structured resources,
e.g., SPKI [7], have not had a formal foundation; some studies suggest that SPKI
may be ambiguously specified and intractable [8, 1].

In this paper, we show that Datalog extended with constraints (denoted
by DatalogC) can define access permissions over structured resources without
compromising the properties of Datalog that make it attractive for trust man-
agement, thus establishing a suitable logical foundation for a wider class of TM
languages. DatalogC allows first-order formulas in one or more constraint do-
mains, which may define file hierarchies, time intervals, and so on, to be used in
the body of a rule, thus representing access permissions over structured resources
in a declarative language. We study several constraint domains that are useful
for representing structured resources, e.g., tree domains and range domains, and
show that DatalogC with these domains can be evaluated efficiently. We also
define a general class of tractable constraint domains, called linearly decompos-
able unary constraint domains and present a concrete declarative TM language,
RTC

1 , that is based on DatalogC . We show how to translate credentials in RTC
1 ,

which extends the Datalog-based RT1 language from the RT framework [15,
16] with constraints, into DatalogC over tractable constraint domains. We also
use DatalogC to analyze another prominent TM systems KeyNote [3], and show
that KeyNote uses constraint domains that are too expressive.

Constraint Datalog has been studied extensively in the Constraint Database
(CDB) literature [11, 12, 18–21]. However, TM applications involve constraint
domains that are outside the scope of previous CDB research. Moreover, TM
applications have different computational complexity requirements. In the CDB
literature, tractability is often measured using data complexity, which considers
the processing time for a fixed query (set of rules) as the size of the database (set

2

of facts) grows. Data complexity is appropriate for CDB applications where the
size of the input databases dominates the size of the queries by several orders of
magnitude. However, expressing the access control policy in trust management
and distributed access control requires both rules and facts. In particular, dele-
gation, a characteristic feature of trust management, is represented using rules
rather than facts. To guarantee that queries can be answered in time related
to the complexity of the access control policy, TM applications require efficient
computation as a function of the size of the set of rules and facts.

The rest of this paper is organized as follows. Some background on constraint
Datalog appears in Section 2. Tractability of constraint domains is studied in
Section 3, with RTC

1 in Section 4 and an analysis of KeyNote in Section 5. We
conclude in Section 6.

2 Background on Constraint Datalog

Constraint Datalog is a restricted form of Constraint Logic Programming
(CLP) [9], and is also a class of query languages for CDB.

2.1 Datalog

Datalog is a restricted form of logic programming with variables, predicates,
and constants, but without function symbols. A Datalog rule has the form

R0(t0,1, . . . , t0,k0) :− R1(t1,1, . . . , t1,k1), . . . , Rn(tn,1, . . . , tn,kn
)

where R0, . . . , Rn are predicate (relation) symbols and each term ti,j is ei-
ther a constant or a variable (0 ≤ i ≤ n and 1 ≤ j ≤ ki). The
formula R0(t0,1, . . . , t0,k0) is called the head of the rule and the sequence
R1(t1,1, . . . , t1,k1), . . . , Rn(tn,1, . . . , tn,kn) the body. If n = 0, then the body
is empty and the rule is called a fact. A rule is safe if all variables occurring
in the head also appear in the body. A Datalog program is a finite set of
Datalog rules. Datalog is attractive for trust management because of the
following reasons.

1. Datalog is declarative and is a subset of first-order logic; therefore, the
semantics of a Datalog-based TM language is declarative, unambiguous,
and widely understood.

2. Datalog has been extensively studied both in logic programming, and in the
context of relational databases as a query language that supports recursion.
TM languages based on Datalog can benefit from past results and future
advancements in those fields.

3. The function-symbol-free property of Datalog ensures its tractability. For
a safe Datalog program with fixed maximum number of variables per rule,
construction of its minimal model takes time polynomial in the size of the
program.

4. There are efficient goal-directed evaluation procedures for answering queries.

3

2.2 Constraint Domains and Constraint Databases

The notion of constraint databases was introduced in [11], and grew out of
the research on Datalog and CLP. It generalizes the relational model of data
by allowing infinite relations that are finitely representable using constraints.
Constraint databases find many applications in spatial and temporal databases.
For recent surveys, see [12, 18].

Intuitively, a constraint domain is a domain of objects, such as numbers,
points in the plane, or files in a file hierarchy, together with a language for
speaking about these objects. The language is typically defined by a set of first-
order constants, function symbols, and relation symbols.

Definition 1. A constraint domain Φ is a 3-tuple (Σ,D,L). Here Σ is a signa-
ture; it consists of a set of constants and a collection of predicate and function
symbols, each with an associated “arity”, indicating the number of arguments
to the symbol. D is a Σ-structure; it consists of the following: a set D called the
universe of the structure, a mapping from each constant to an element in D, a
mapping from each predicate symbol in Σ of degree k to a k-ary relation over D,
and a mapping from each function symbol in Σ of degree k to a function from
Dk into D. L is a class of quantifier-free first-order formulas over Σ, called the
primitive constraints of this domain.

Following common conventions, we assume that the binary predicate symbol
= is contained in Σ and is interpreted as identity in D. We also assume that >
(true) and ⊥ (false) are in L, and that L is closed under variable renaming.

The following are examples of classes of constraint domains that have been
studied in the CDB literature; they are listed in order of increasing expressive
power.

Equality constraint domains The signature Σ consists of a set of constants
and one predicate =. A primitive constraint has the form x = y or x = c,
where x and y are variables, and c is a constant. Datalog can be viewed as
one specific instance of DatalogC with an equality constraint domain.

Order constraint domains The signature Σ has two predicates: = and <.
The Σ-structure is linearly ordered. A primitive constraint has the form
xθy, xθc, or cθx where θ is one of =, <.

Order and inequality constraint domains The signature Σ has predicates
{=, 6=, <,>,≥,≤}. The Σ-structure is linearly ordered. A primitive con-
straint has the form xθy or xθc, where θ is any predicate in Σ.
The structures in order constraint domains and order and inequality con-
straint domains can be integers, rational numbers, real numbers, or some
subset of them.

Linear constraint domains The signature Σ has function symbols + and ∗
and predicates {=, 6=, <,>,≥,≤}. A primitive constraint has the form c1x1+
· · ·+ ckxkθb, where ci is a constant and xi is a variable for each 1 ≤ i ≤ k,
θ is any predicate in Σ, and b is a constant.

4

Polynomial constraint domains The signature Σ has the same functions
symbols and predicate symbols as linear constraint domains. A primitive
constraint has the form p(x1, . . . , xk)θ0, where p is a polynomial in variables
x1, . . . , xk, and θ is any predicate in Σ.
Linear constraints and polynomial constraints may be interpreted over inte-
gers, rational numbers, or real numbers.

Definition 2. Let Φ be a constraint domain.

1. A constraint k-tuple, or a constraint, (in variables x1, . . . , xk) is a finite con-
junction φ1 ∧ · · · ∧φN , where each φi, 1 ≤ i ≤ N , is a primitive constraint in
Φ. Furthermore, the variables in each φi are all free and among x1, . . . , xk.

2. A constraint relation of arity k is a finite set r = {ψ1, . . . , ψM}, where each
ψi, 1 ≤ i ≤M is a constraint k-tuple over the same variables x1, . . . , xk.

3. The formula corresponding to the constraint relation r is the disjunction
ψ1 ∨ · · · ∨ ψM .

4. A constraint database is a finite collection of constraint relations.

Relational calculus, relation algebra, and Datalog can all be enhanced with
constraints as query languages for constraint databases. Our focus in this paper
is Datalog extended with constraints, DatalogC .

2.3 Evaluation of DatalogC

A constraint (Datalog) rule has the form:

R0(x0,1, . . . , x0,k0) :− R1(x1,1, . . . , x1,k1), . . . , Rn(xn,1, . . . , xn,kn
), ψ0

where ψ0 is a constraint in the set of all variables in the rule. When n = 0, the
constraint rule is called a constraint fact. A constraint rule with n hypotheses
may be applied to n constraint facts to produce m facts. The process of applying
a rule to a set of facts requires a form of quantifier elimination, made precise in
the following two definitions.

Definition 3. Given a rule of the form above and n facts of the form

Ri(xi,1, . . . , xi,ki) :− ψi(xi,1, . . . , xi,ki)

where each ψi is a constraint, 1 ≤ i ≤ n, a constraint rule application produces
m ≥ 0 facts

R0(x1, . . . , xk) :− ψ′j(x1, . . . , xk),

where each ψ′j is a constraint, 1 ≤ j ≤ m, and ψ′1(x1, . . . , xk)∨· · ·∨ψ′m(x1, . . . , xk),
or ⊥ when m = 0, is equivalent to the formula

∃ ∗ (ψ1(x1,1, . . . , x1,k1) ∧ · · · ∧ ψn(xn,1, . . . , xn,kn
) ∧ ψ0),

where “∗” is the list of the variables that appear in the body but not the head
of the rule.

5

Intuitively, a rule means that the head of the rule holds if the body holds,
where variables that appear only in the body are implicitly existentially quan-
tified. Therefore, the head of the rule holds if the displayed ∃∗ formula is
true. When the ∃∗ formula is equivalent to a disjunction ψ′1(x1, . . . , xk) ∨ · · · ∨
ψ′m(x1, . . . , xk), then the rule reduces to a set of facts (rules with only constraints
in the body).

The form of constraint rule application defined above is called closed-form
because the outputs ψ′1, . . . , ψ

′
m are constraints in the same constraint domain

as the input facts. Closed-form application requires quantifier elimination.

Definition 4. Let x1, . . . , xk be a set of variables, ∗ ⊆ {x1, . . . , xk} some subset,
and ∗ = {x1, . . . , xk}− ∗ its complement. A constraint domain (Σ,D,L) admits
quantifier elimination if, for every formula ∃∗ψ(x1, . . . , xk) with ψ any constraint
(a conjunction of several constraints is still a constraint), it is possible to compute
an equivalent quantifier-free disjunction of constraints ψ′1(∗) ∨ · · · ∨ ψ′m(∗) with
the same free variables.

Linear constraint domains (and other less expressive domains) admit quan-
tifier elimination. On the other hand, the domain of polynomial constraints over
integers does not admit quantifier elimination. This follows from the fact that it
is undecidable to determine whether constraints of the form p(x1, . . . , xk) = 0,
known as Diophantine equations, have integer solutions or not [17]. The domain
of polynomial constraints over real numbers admits quantifier elimination, but
the complexity is very high.

The least fixpoint of a DatalogC program over any constraint domain that
admits quantifier elimination may be computed by iterated rule application. The
following algorithm terminates when all derivable new facts are already implied
by previous results of the algorithm.

Definition 5 (The DatalogC least fixpoint algorithm).

constraintFixpoint(Facts, Rules) {
Results = Facts; Changed = true;
while (Changed) {
Changed = false;
foreach Rule = "R0(. . .) :− R1(. . .), . . . , Rk(. . .), ψ0" in Rules
foreach Tuple <(R1 :− ψ1), . . . , (Rk :− ψk)>

constructed from Results {
NewResults = constraintRuleApplication(Rule, Tuple)
foreach Fact in NewResults {
if (Fact is not implied by any fact in Results) {

Results = Results ∪ {Fact}; Changed=true; } } }
}
return Results;

}
The set of facts produced by this algorithm is called the constraint least

fixpoint of the program. Even when a constraint domain admits quantifier elim-
ination, the least fixpoint algorithm may not terminate. An example arises in

6

DatalogC with linear constraints over the integers, which can express any com-
putable function. More efficient least fixpoint algorithms exist. Also, resolution-
style goal-directed evaluation procedures for Datalog can be adapted to work
with DatalogC [20].

In the CDB literature, most complexity results are about data complexity,
which is a measure of running time for a fixed query as the size of the input
database grows. Some constraint domains that can be evaluated in closed-form
with Datalog with PTIME data complexity are: equality constraints, order
and inequality constraints over dense linear order domains [11], and integer pe-
riodicity constraints (x ≡k y, x ≡k c) for fixed set of k’s [21].

As mentioned in the introduction, a more restrictive DatalogC complexity
measure is appropriate for TM applications.

Definition 6. A constraint domain Φ is tractable, if evaluating any DatalogC

program with constraints in Φ has time complexity polynomial in the size of
the program, when the size of each rule is bounded by a fixed value. One good
measure of rule size is the sum of all the arities of the predicates in a rule.

3 Tractable Constraint Domains in Trust Management

In TM languages, it is useful to appeal to constraints from several domains. It
is straightforward to define multi-sorted DatalogC , following the standard def-
inition of multi-sorted first-order logic. In order to keep each constraint domain
separate from the others, we assume that when constraint domains are combined,
each domain is given a separate sort, all predicate symbols are only applicable
to arguments from the appropriate constraint domain, and each variable belongs
to only one sort. It is straightforward to verify, by inspection of the algorithm
in Definition 5, that any multi-sorted combination of tractable domains remains
tractable.

Theorem 1. A multi-sorted DatalogC program with constraints in several do-
mains can be evaluated in time polynomial in the size of the program if all in-
volved constraint domains are tractable.

We now give several classes of constraint domains that are useful in TM.

Tree domains Each constant of a tree domain takes the form 〈a1, . . . , ak〉.
Imagine a tree in which every edge is labelled with a string value. The con-
stant 〈a1, . . . , ak〉 represents the node for which a1, . . . , ak are the strings on
the path from root to this node. A primitive constraint is of the form x = y
or xθ〈a1, . . . , ak〉, in which θ ∈ {=, <,≤,≺,�}, x < 〈a1, . . . , ak〉 means that
x is a child of the node 〈a1, . . . , ak〉, and x ≺ 〈a1, . . . , ak〉 means that x is a
descendant of 〈a1, . . . , ak〉.

Range domains Range domains are syntactically sugared order domains. A
primitive constraint has the form x = y, x = c or x ∈ (c1, c2), in which c is
a constant, each of c1 and c2 is either a constant or a special symbol “∗”,
meaning unbounded. And when c1 is not ∗, “(” can also be “[”; similarly,
“)” can be “]” when c2 is not ∗.

7

Discrete domains with sets This is syntactically sugared version of equality
domains. A primitive constraint has the form x = y, or x ∈ {c1, . . . , c`}, in
which c1, . . . , c` are constants.

The following is an example that uses three sorts: one tree domain and two
range domains.

Example 1. An entity A grants to an entity B the permission to connect to
machines in the domain “stanford.edu” at port number 80, and allows B to
further delegate any part of the permission, the validity period of this grant is
from time t1 to time t3. To represent this, we need to use a tree domain for
DNS names, a range domain for port number, and another range domain for
time. The above grant and delegation can be represented using the following
constraint fact and rule.

grantConnect(A, B, h, p, v) :− h ≺ 〈edu,stanford〉, p = 80, v ∈ [t1, t3].
grantConnect(A, x, h, p, v) :− grantConnect(B, x, h, p, v),

h ≺ 〈edu,stanford〉, p = 80, v ∈ [t1, t3].

If B grants to another entity D the permission to connect to the host
“cs.stanford.edu” and any machine in the domain “cs.stanford.edu” at any port
number, with validity period from t2 to t4. Then we have:

grantConnect(B, D, h, p, v) :− h � 〈edu,stanford,cs〉, v ∈ [t2, t4].

From the above, we can conclude the following, assuming that t1 ≤ t2 ≤ t3 ≤ t4:

grantConnect(A, D, h, p, v) :− h � 〈edu,stanford,cs〉, p = 80, v ∈ [t2, t3].

3.1 Hierarchical Domains Are Tractable

We first show that tree domains are tractable, using a specialized property of
unary statements about tree orderings.

Definition 7. A constraint domain is unary if each primitive constraint either
has the form x = y, where x and y are variables, or contains only one variable.
We call a unary primitive constraint a basic constraint.

Definition 8. A unary constraint domain is hierarchical if, for any two basic
constraints φ1(x) and φ2(x), either φ1(x) ∧ φ2(x) is unsatisfiable or one of the
constraints implies the other.

It is not difficult to verify that tree domains are hierarchical.

Theorem 2. Hierarchical domains are tractable.

Proof. Consider the algorithm in Definition 5 and the process of constraint rule
application. The key step is quantifier elimination, i.e., finding a formula equiv-
alent to ∃ ∗ ψ(x1, . . . , xk), in which ψ(x1, . . . , xk) is a conjunction of primitive
constraints and ∗ ⊆ {x1, . . . , xk}. In hierarchical constraint domains, this can be

8

done as follows. First, we transform ψ to an equivalent constraint that is free of
equality constraints. For every constraint xi = xj in ψ, we remove xi = xj and
replace every occurrence of xj in ψ with xi. Next, if any variable xi has two basic
constraints, by the property of hierarchical domains, either their conjunction is
unsatisfiable, in which case ∃ ∗ ψ(x1, . . . , xk) is equivalent to ⊥, or one of them
implies the other, in which case we can remove the less restrictive one. Repeat-
ing the above step until either we know that ∃ ∗ ψ(x1, . . . , xk) is not satisfiable,
or we have a constraint that has at most one basic constraint per variable. In
the latter case, we simply remove the constraints about variables occurring in ∗
(since any one basic constraint is satisfiable) and get an constraint equivalent to
∃ ∗ ψ(x1, . . . , xk).

Following this process for quantifier elimination, the fixpoint computation for
any hierarchical domains does not introduce any new basic constraints. If the
algorithm begins with a set of constraint rules that have total size N (and fixed
rule size), there are at most polynomial number of different constraint facts as
possible results, giving us a computational complexity of PTIME.

3.2 Linearly Decomposable Domains Are Tractable

Range domains are not hierarchical. The conjunction of two basic constraints
x ∈ (c1, ∗) and x ∈ (∗, c2) results in a new constraint x ∈ (c1, c2), which is not
equivalent to either.

Definition 9. A unary constraint domain is said to be linearly decomposable if
there exists a constant d such that, given any set C of basic constraints about one
variable x, there exists a set C ′ of basic constraints about x such that |C ′| ≤ d|C|,
where |C| is the sum of the sizes of constraints in C for some appropriate notion
of size (e.g., number of symbols in a constraint), and the conjunction of any
subset of C ∪ C ′ can be represented by the disjunction of constraints in C ′. We
say that C ′ is a decomposition of C.

Clearly, all hierarchical domains are linearly decomposable. Range domains
are also linearly decomposable. For example, a set of constraints C = {x ∈
(∗, 10], x ∈ [5, ∗), x ∈ [1, 5]} can be decomposed into C ′ = {x ∈ (∗, 1), x ∈
[1, 4], x ∈ [5, 5], x ∈ (5, 10], x ∈ (10, ∗)}. Discrete domains with sets are also
linearly decomposable, as each constraint x ∈ {c1, . . . , c`} is equivalent to the
disjunction of ` constraints x = c1, · · · , x = c`. This is linear because the size of
the original constraint is Θ(`).

Theorem 3. Linearly decomposable domains are tractable.

Proof. Given a DatalogC program, one can collect all the basic constraints in it,
rename them so that all the constraints are about the same variable, and compute
a linear decomposition of them. During quantifier elimination, a conjunction
of multiple constraints on one variable can be replaced with a disjunction of
constraints in C ′. The size of C ′ is bounded by dN , and constraints in C ′ have
the same property as those in hierarchical domains. The rest follows from the
proof of Theorem 2.

9

3.3 Not All Unary Domains Are Tractable

The key reason that linearly decomposable domains are tractable is that al-
though new basic constraints are introduced by the conjunction of existing con-
straints, the number of these new constraints are still linear in the total size of the
original constraints. The tractability result in Theorem 3 can be generalized to
the case of polynomially decomposable domains. We now show that some unary
constraint domains are not polynomially decomposable and are intractable.

Example 2. The universe of the constraint domain is all the subsets of

A = {a11, · · · , a1n, a21, · · · , a2n, · · · , an1, · · · , ann}

and the only predicates are = and ⊆. We show a program that has n2 constraint
rules and total size n4:

{p1(x) :− x ⊆ A− {a1i}. | 1 ≤ i ≤ n}
{p2(x) :− p1(x), x ⊆ A− {a2i}. | 1 ≤ i ≤ n}

· · ·
{pn(x) :− pn−1(x), x ⊆ A− {ani}. | 1 ≤ i ≤ n}

The constrain least fixpoint is

{pn(x) :− x ⊆ A− {a1i1 , a2i2 , · · · , anin
} | 1 ≤ i1 ≤ n, . . . , 1 ≤ in ≤ n},

which has size nn. In this example, answering a single query is still tractable,
computing the fixpoint is not.

3.4 Discussion

There are tractable constraint domains that are not unary; for example, order
and inequality constraints over densely ordered structures. In this paper, we
limit our attention to unary constraint domains. Unary domains are not very
interesting from the point of view of constraint satisfaction. However, we find
them attractive for the following reasons. First, DatalogC with unary domains
strictly generalizes Datalog, yet preserves the features of Datalog that makes
it attractive for trust management. Second, DatalogC with unary domains can
express most useful assertions in trust management, because describing permis-
sions or attributes of entities typically does not involve constraints relating two
variables in ways other than equality. Third, DatalogC with unary domains is
easier to understand and to implement than more complicated domains. Ease of
understanding is an important advantage, since authors of TM policy statements
need to understand their meanings.

4 RT C
1 : A Declarative TM language based on DatalogC

In this section, we introduce RTC
1 , a constraint-based extension to the RT1

language in the RT framework [15, 16], as a concrete example of declarative TM
languages based on DatalogC . Each statement in RTC

1 can be translated into
an equivalent rule in DatalogC with linearly decomposable domains.

10

4.1 Overview of the RT Framework

The RT framework is a family of Role-based Trust-management languages. The
basic concepts of RT include entities and roles. Entities can issue statements
and make requests. RT assumes that one can determine which entity issued
a particular statement or request. Public/private key pairs clearly make this
possible. We use A, B, and D, sometimes with subscripts, to denote entities.

A role in RT takes the form of an entity followed by a role name, separated
by a dot. The simplest kinds of role names, used in RT0, are identifiers. We use
R, often with subscripts, to denote role names. A role is similar to a group; it
defines a set of entities who are members of this role. Each entity A has the
authority to define who are the members of each role of the form A.R, and A
does so by issuing statements. Each statement defines one role to contain either
an entity, another role, or certain other expressions that evaluate to a set of
entities. A role may be defined by multiple statements. Their effect is union.

We now describe four kinds of statements for defining roles in RT1; for sim-
plicity, we assume that role names are simple identifiers.

– Type-1 : A.R←−B
A and B are (possibly the same) entities, and R is a role name. This means
that A defines B to be a member of A’s R role.

– Type-2 : A.R←−B.R1

This statement means that A defines its R role to include (all members of)
B’s R1 role.

– Type-3 : A.R←−A.R1.R2

We call A.R1.R2 a linked role. This means that A defines its R role to include
(members of) every role B.R2 in which B is a member of A.R1 role.

– Type-4 : A.R←−A1.R1 ∩A2.R2 ∩ · · · ∩A`.R`

This means that A defines its R role to include the intersection of the ` roles.

Following is an example from [16], illustrating the use of these statements.

Example 3. A fictitious Web publishing service, EPub, offers a discount to any-
one who is both an ACM member and a preferred customer of EOrg, the parent
organization of EPub. EOrg considers students of all universities to be preferred
customers, and delegate the authority over the identification of students to enti-
ties that EOrg believes are legitimate universities. EOrg additionally delegates
the authority over identifying universities to a fictitious Accrediting Board for
Universities, ABU. Alice is an ACM member and a student of StateU, which is
accredited by ABU.

EPub.discount ←− EOrg.preferred ∩ ACM.member
EOrg.preferred ←− EOrg.university.student
EOrg.university ←− ABU.accredited
ABU.accredited ←− StateU
StateU.student ←− Alice
ACM.member ←− Alice

11

In the above example, role names are simple identifiers. In RT1, more gener-
ally, role names can have parameters. Parameterized roles can represent access
permissions that take parameters identifying resources and access modes, role
templates (e.g., leader of a project), relationships between entities (e.g., man-
ager of an employee), and attributes that have fields (e.g., digital driver licenses,
digital diplomas).

4.2 RT C
1

RT has application domain specification documents (ADSDs) and statements.
Each ADSD defines a vocabulary, which is a suite of related data types and role
identifiers (role ids for short).

RTC
1 has several categories of types: integer types, float types, enumeration

types, string types, tree types. Integer types, float types, and ordered enumer-
ation types correspond to range domains. Unordered enumeration types and
string types correspond to discrete domains with sets. And tree types corre-
spond to tree domains. Each type category has a syntax for defining value sets,
for each value set S, x ∈ S corresponds to a basic constraint in the corresponding
constraint domain. In an ADSD, to declare a role id, one needs to declare the
parameters. Each parameter has a name and a data type.

An RTC
1 statement has the same structure as an RT0 statement. The differ-

ence is that each role name takes the form of r(h1, . . . , hn), in which r is a role
identifier, and for each i in 1..n, hi takes one of the following three forms: f = c,
f ∈ S, and f = ref , in which f is the name of one of r’s parameters that has
type τ , c is a constant of type τ , S is a value set of type τ , and ref is a reference
to another parameter in the same statement, also of type τ .

We now describe how to translate RTC
1 statements into DatalogC rules.

Each type is mapped to a constraint domain, and each role id r is mapped to a
corresponding predicate symbol r. Role names in RTC

1 have named parameters;
these can be easily translated into unnamed (position-based) parameters by
choosing an order among parameters.

1. From A.r(h1, . . . , hn)←−D to

r(A,D, x1, . . . , xk) :− ψ
In which k is the arity of r and ψ is a conjunction of primitive constraints
corresponding to parameters h1, . . . , hn. A parameter like fj = c is translated
into a basic constraint x = c. A parameter like fi ∈ S is translated into a
corresponding basic constraint. And a parameter like fj = ref is translated
into an equality constraint involving two variables.

2. From A.r(h1, . . . , hn)←−B.r1(s1, . . . , sm) to

r(A, y, x1, . . . , xk) :− r1(B, y, x1,1, . . . , x1,k1), ψ

In which k and k1 are the arities of r and r1, ψ is a constraint corresponding
to the parameters h1, . . . , hn, s1, . . . , sm.

3. From A.r(h1, . . . , hn)←−A.r1(s1,1, . . . , s1,m1).r2(s2,1, . . . , s2,m2) to

r(A, y, x1, . . . , xk) :− r1(A, z, x1,1, . . . , x1,k1), r2(z, y, x2,1, . . . , x2,k2), ψ

12

In which ψ is a constraint corresponding to the parameters in the statement.
4. From A.r(h1, . . . , hn)←−A1.r1(s1,1, . . . , s1,m1)∩· · ·∩A`.r`(s`,1, . . . , s`,m`

) to

r(A, y, x1, . . . , xk) :− r1(A1, y, x1,1, . . . , x1,k1), · · · , r`(A`, y, x`,1, . . . , x`,k`
), ψ

In which ψ is a constraint corresponding to the parameters in the statement.

As shown in [15, 16], the RT framework supports for flexible delegation re-
lationships and distributed credential chain discovery. RT1 requires that every
variable in a statement must appear in the body, to guarantee that the resulting
Datalog rule is safe. As a result, one cannot represent granting the permissions
of connecting to any port number in a range to an entity. In RTC

1 , this restric-
tion is not needed anymore. The addition of constraints enables one to represent
permissions involving ranges and structured resources. Using DatalogC as the
foundation of RTC

1 provides a sound semantics foundation and tractability guar-
antee.

5 Using DatalogC to Analyze KeyNote

KeyNote [3] is a TM system that is based on PolicyMaker [4]. A KeyNote as-
sertion is essentially a delegation from its issuer to its licensees, which in the
simplest case is a single entity. A KeyNote request is characterized by a list of
fields, which are name/value pairs. An assertion also has conditions written in
an expression language, which refers to fields in requests. The intuitive mean-
ing of an assertion is that, if the licensees support a request, and the request
satisfies the conditions, then the issuer supports the request as well. KeyNote
can be roughly captured by DatalogC with several very expressive constraint
domains. One domain is integers with function symbols {+,−, ∗, /,%, ˆ}, predi-
cates {=, 6=, <,>,≤,≥}, and any quantifier-free first-order formula as a primitive
constraint. The fragment of that domain without function symbols {/,%, ˆ} is
polynomial constraints over integers, which, as we discussed in Section 2.3, does
not admit quantifier elimination.

Theorem 4. It is undecidable to compute the set of all requests that a set of
KeyNote assertions authorizes.

Note that the above theorem does not rule out that possibility to determine
whether any specific request is authorized by a set of assertions. In fact, this
only involves arithmetic computation and comparison. The above result means
that there does not exist an algorithm to perform analysis of all the requests
being authorized by a set of assertions. In fact, this is so even when there is
only one assertion with a single entity as the licensees, and the question is just
whether the assertion authorizes any request at all. We view this as a significant
disadvantage, because it would be desirable to evaluate and analyze the effect
of security assertions.

We want to point out that examples given in [3] do not use the expressive
power that leads to undecidability. In fact, we have not encountered any TM ex-
ample both in our research and in literature that requires such expressive power;

13

therefore, we argue that the expression language in KeyNote is too expressive.
On the other hand, it has been shown that the delegation structure in KeyNote
is too limited in TM applications [14, 15].

Related Work

Several TM languages were designed based on Datalog without constraints.
Datalog with periodicity constraints is used in [2] in an access control lan-
guage that supports periodic temporal constraints; however, this work does not
deal with representation of structured resources and the general tractability of
different constraint domains.

In comparison with work on constraint databases, Chomicki et al. [5] state
“Recent developments in constraint databases, in particular the research on ag-
gregation and spatiotemporal applications, suggest a need for middle-ground
formalisms that preserve some of the expressive power of constraint databases
and constraint query languages, while at the same time generalizing in a natural
way the basic assumptions underlying the classical relational model of data.” In
[5], Chomicki et al. study constraint databases with variable independence con-
ditions, which is a property of constraint relations. Our work to find tractable
domains is also a search for useful middle-grounds, but our motivations are differ-
ent, namely, usefulness in trust management, simplicity, and tractability. These
motivations led us to take a different approach; we study properties of constraint
domains, rather than properties of constraint relations. Moreover, properties like
hierarchical and linearly decomposable are not limited to one class of constraint
domains; our approach is thus similar to yet different from that in [19], in which
Revesz studies the complexity of DatalogC with various limited form of linear
constraints. We believe that DatalogC with unary constraint domains provides
a useful middle-ground that generalizes Datalog in a natural and useful way
while preserving many nice properties of Datalog.

6 Conclusion and Future Directions

Trust management (TM) languages need a declarative and formal foundation.
Although Datalog has been the best logical foundation for distributed access
control decisions to date, Datalog does not meet the practical need for policies
about common structured resources. Our work with the RT family of TM lan-
guages [15, 16], and demonstration applications such as a distributed scheduling
system and web-based file-sharing system, underscore the need for a more expres-
sive logical foundation. Datalog with constraints is a promising and expressive
alternative that eliminates some deficiencies of Datalog without sacrificing any
of the attractive features that make Datalog appealing for trust management.

In this paper, we identify a class of constraint domains called linearly de-
composable unary domains, prove that Datalog with any combination of such
constraint domains is tractable, and show that permissions associated with struc-
tured resources, including tree domains and range domains, fall into this class.

14

To illustrate the value of constraint Datalog for designing TM languages, we
present a declarative TM language, RTC

1 , based on constraint Datalog. We
also use Datalog to analyze KeyNote, which turns out to be less expressive
than RTC

1 in significant respects, yet less tractable in the worst case.
Further study is needed on the tractability of unary constraint domains and

non-unary constraint domains useful for trust management. We showed that
linearly decomposability is a sufficient condition for tractability; however, we
have not identified necessary and sufficient conditions for a unary constraint
domain to be tractable. Other constraint domains worthy of investigation include
strings with constraints involving regular expressions.

References

1. Olav Bandmann and Mads Dam. A note on SPKI’s authorization syntax. In Pre-
Proceedings of 1st Annual PKI Research Workshop, April 2002. Available from
http://www.cs.dartmouth.edu/˜pki02/.

2. Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela Samarati. An access
control model supporting periodicity constraints and temporal reasoning. ACM
Transactions on Database Systems, 23(3):231–285, 1998.

3. Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The
KeyNote trust-management system, version 2. IETF RFC 2704, September 1999.

4. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173.
IEEE Computer Society Press, May 1996.

5. Jan Chomicki, Dina Goldin, Gabriel Kuper, and David Toman. Variable indepen-
dence in constraint databases, November 2001. In final review for IEEE Transac-
tions on Knowledge and Data Engineering.

6. John DeTreville. Binder, a logic-based security language. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, pages 105–113. IEEE Computer
Society Press, May 2002.

7. Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu
Ylonen. SPKI certificate theory. IETF RFC 2693, September 1999.

8. Jonathan R. Howell. Naming and sharing resources acroos administrative bound-
aries. PhD thesis, Dartmouth College, May 2000.

9. Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey.
Journal of Logic Programming, 19/20:503–580, 1994.

10. Trevor Jim. SD3: A trust management system with certified evaluation. In Pro-
ceedings of the 2001 IEEE Symposium on Security and Privacy, pages 106–115.
IEEE Computer Society Press, May 2001.

11. Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint query
languages. Journal of Computer and System Sciences, 51(1):26–52, August 1995.
Preliminary version appeared in Proceedings of the 9th ACM Symposium on Prin-
ciples of Database Systems (PODS), 1990.

12. Gabriel Kuper, Leonid Libkin, and Jan Paredaens, editors. Constraint Databases.
Springer, 2000.

13. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. A practically imple-
mentable and tractable Delegation Logic. In Proceedings of the 2000 IEEE Sym-
posium on Security and Privacy, pages 27–42. IEEE Computer Society Press, May
2000.

15

14. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation Logic: A logic-
based approach to distributed authorization. ACM Transaction on Information
and System Security (TISSEC), February 2003. To appear.

15. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-
based trust management framework. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, pages 114–130. IEEE Computer Society Press, May 2002.

16. Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed credential
chain discovery in trust management. To appear in Journal of Computer Secu-
rity. Extended abstract appeared in Proceedings of the Eighth ACM Conference on
Computer and Communications Security (CCS-8), November 2001.

17. Yuri V. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, 1993.
18. Peter Z. Revesz. Constraint databases: A survey. In L. Libkin and B. Thalheim,

editors, Semantics in Databases, number 1358 in LNCS, pages 209–246. Springer,
1998.

19. Peter Z. Revesz. Safe Datalog queries with linear constraints. In Proceedings of the
4th International Conference on Principles and Practice of Constraint Program-
ming (CP98), number 1520 in LNCS. Springer, 1998.

20. David Toman. Memoing evaluation for constraint extensions of Datalog. Con-
straints: An International Journal, 2:337–359, 1997.

21. David Toman and Jan Chomicki. Datalog with integer periodicity constraints.
Journal of Logic programming, 35:263–290, 1994.

16

