Skip to main content

FATES: Finding A Time dEpendent Shortest path

  • Conference paper
  • First Online:
Mobile Data Management (MDM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2574))

Included in the following conference series:

Abstract

We model a moving object as a sizable physical entity equipped with GPS, wireless communication capability, and a computer. Based on a grid model, we develop a distributed system, FATES, to manage data for moving objects in a two-dimensional space. The system is used to provide time-dependent shortest paths for moving objects. The performance study shows that FATES yields shorter average trip time when there is a more congested route than any other routes in the domain space.

This research was partially supported by the NSF under grant numbers EIA-0080134, EIA98-18320, IIS98-17432, and IIS99-70700.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1993.

    Google Scholar 

  2. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 322–331, 1990.

    Google Scholar 

  3. H. D. Chon, D. Agrawal, and A. El Abbadi. Storage and Retrieval of Moving Objects. In Proceedings of the Int. Conf. on Mobile Data Management, pages 173–184, 2001.

    Google Scholar 

  4. H. D. Chon, D. Agrawal, and A. El Abbadi. Query processing for moving objects with space-time grid storage model. In Proceedings of the Int. Conf. on Mobile Data Management, 2002.

    Google Scholar 

  5. S. Handley, P. Langley, and F. Rauscher. Learning to predict the duration of an automobile trip. In Proceedings of the Int. Conf. on Knowledge Discovery and Data Mining, pages 219–223, 1998.

    Google Scholar 

  6. G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Moving Objects. In Proceedings of ACM Symp. on Principles of Database Systems, pages 261–272, 1999.

    Google Scholar 

  7. K. Nachtigall. Time depending shortest-path problems with applications to railway networks. European Journal of Operational Research, 83:154–166, 1995.

    Article  MATH  Google Scholar 

  8. OnStar. http://www.onstar.com.

  9. A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. Journal of the ACM, 37(3):607–625, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Pallottino and M. G. Scutella. Shortest path algorithms in transportation models: classical and innovative aspects. In In Equilibrium and Advanced Transportation Modelling, Kluwer, pages 245–281, 1998.

    Google Scholar 

  11. C. E. Perkins. Mobile IP. IEEE Communications Magazine, pages 84–99, May 1997.

    Google Scholar 

  12. D. Pfoser and C. S. Jensen. Capturing the Uncertainty of Moving-Object Representations. In Proc. of the Int. Symposium on Spatial Databases, SSD, pages 111–132, 1999.

    Google Scholar 

  13. D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Approaches to the Indexing of Moving Object Trajectories. In Proceedings of the Int. Conf. on Very Large Data Bases, pages 395–406, 2000.

    Google Scholar 

  14. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the Positions of Continuously Moving Objects. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 331–342, 2000.

    Google Scholar 

  15. D. Schrank and T. Lomax. The 2001 Urban Mobility Report. Technical report, Texas Transportation Institute, 2001.

    Google Scholar 

  16. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving Objects. In Proceedings of the Int. Conf. on Data Engineering, pages 422–432, 1997.

    Google Scholar 

  17. J. Tayeb, O. Ulusoy, and O. Wolfson. A Quadtree Based Dynamic Attribute Indexing Method. The Computer Journal, 41(3):185–200, 1998.

    Article  MATH  Google Scholar 

  18. M. Vazirgiannis and O. Wolfson. A Spatiotemporal Model and Language for Moving Objects on Road Networks. In Int. Symposium on Spatial and Temporal Databases, pages 20–35, 2001.

    Google Scholar 

  19. O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving Objects Databases: Issues and Solutions. In Proceedings of the 10th International Conference on Scientific and Statistical Database Management, pages 111–122, July 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chon, H.D., Agrawal, D., Abbadi, A.E. (2003). FATES: Finding A Time dEpendent Shortest path. In: Chen, MS., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds) Mobile Data Management. MDM 2003. Lecture Notes in Computer Science, vol 2574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36389-0_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-36389-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00393-9

  • Online ISBN: 978-3-540-36389-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics