Skip to main content

Is this Finite-State Transducer Sequentiable?

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2494))

Included in the following conference series:

  • 266 Accesses

Abstract

Sequentiality is a desirable property of finite state transducers: such transducers are optimal for time efficiency. Not all transducers are sequentiable. Sequentialization algorithms of finite state transducers do not recognize whether a transducer is sequentiable or not and simply do not ever halt when it is not. Choffrut proved that sequentiality of finite state transducers is decidable. Béal et al. have proposed squaring to decide sequentiality. We propose a different procedure, which, with ε-closure extension, is able to handle letter transducers with arbitrary ε-ambiguities, too. Our algorithm is more economical than squaring, in terms of size. In different cases of non-sequentiability necessary and sufficient conditions of the ambiguity class of the transducer can be observed. These ambiguities can be mapped bijectively to particular basic patterns in the structure of the transducer. These patterns can be recognized, using finite state methods, in any transducer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakharovitch. Squaring transducers: An efficient procedure for deciding functionality and sequentiality. In D. Gonnet, G. Panario and A. Viola, editors, Proceedings of LATIN 2000, volume 1776, pages 397–406. Springer, Heidelberg, 2000. LNCS 1776.

    Chapter  Google Scholar 

  2. Christian Choffrut. Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationelles. Theoretical Computer Science, 5(1):325–337, 1977.

    Article  MathSciNet  Google Scholar 

  3. Tamás Gaál. Extended sequentializaton of finite-state transducers. In Proceedings of the 9th International Conference on Automata and Formal Languages (AFL’99), 1999. Publicationes Mathematicae, Supplement 60 (2002).

    Google Scholar 

  4. Tamás Gaál. Extended sequentializaton of transducers. In Sheng Yu and Andrei Păun, editors, Proceedings of the 5th International Conference on Implementation and Application of Automata (CIAA 2000), pages 333–334, Heidelberg, 2000. Springer. LNCS 2088.

    Google Scholar 

  5. Lauri Karttunen. The replace operator. In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics. ACL-95, pages 16–24, Boston, Massachusetts, 1995. ACL.

    Google Scholar 

  6. Lauri Karttunen and Kenneth R. Beesley. Finite-State Morphology: Xerox Tools and Techniques. Cambridge University Press, Cambridge UK, 2002? Forthcoming.

    Google Scholar 

  7. Lauri Karttunen, Jean-Pierre. Chanod, Gregory Grefenstette, and Anne Schiller. Regular expressions for language engineering. Natural Language Engineering, 2(4):305–328, 1996. CUP Journals (URL: http://www.journals.cup.org).

    Article  Google Scholar 

  8. Lauri Karttunen, Tamás Gaál, Ronald M. Kaplan, André Kempe, Pasi Tapanainen, and Todd Yampol. Finite-state home page. http://www. xrce. xerox. com/competencies/content-analysis/fst/, Xerox Research Centre Europe, 1996–2002. Grenoble, France.

  9. Mehryar Mohri. Compact representation by finite-state transducers. In Proceedings of the 32nd meeting of the Association for Computational Linguistics (ACL 94), 1994.

    Google Scholar 

  10. Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Linguistics, pages 269–312, 1997.

    Google Scholar 

  11. Mehryar Mohri. On the use of sequential transducers in natural language processing. In Finite-State Language Processing, chapter 12, pages 355–378. MIT Press, Cambridge, Massachusetts, USA, 1997.

    Google Scholar 

  12. Emmanuel Roche and Yves Schabes, editors. Finite-State Language Processing. MIT Press, Cambridge, Massachusetts, USA, 1997.

    Google Scholar 

  13. Marcel-Paul Schützenberger. Sur une variante des fonctions sequentielles. Theoretical Computer Science, 4(1):47–57, 1977.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaál, T. (2002). Is this Finite-State Transducer Sequentiable?. In: Watson, B.W., Wood, D. (eds) Implementation and Application of Automata. CIAA 2001. Lecture Notes in Computer Science, vol 2494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36390-4_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-36390-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00400-4

  • Online ISBN: 978-3-540-36390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics