Skip to main content

Supernondeterministic Finite Automata

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2494))

Included in the following conference series:

  • 259 Accesses

Abstract

We show that a simple generalization of the transition tables of nondeterministic finite automata leads to a hierarchy of succinct nondeterministic descriptions for finite automata. We show that the hierarchy corresponds to deterministic finite automata on level 0 and non-deterministic finite automata on level 1 by default, and prove that the hierarchy corresponds to alternating (boolean) finite automata on level 2. We show that there exists an n-state level 3 finite automaton M such that its equivalent minimal deterministic finite automaton M’ has more that 22n states.

This research was supported by grants from the University of Stellenbosch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.A. Brzozowski and E. Leiss, On Equations for Regular Languages, Finite Automata, and Sequential Networks. Theoretical Computer Science 10 (1980) 19–35.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Chandra, D. C. Kozen and L. J. Stockmeyer, Alternation. Journal of the ACM 28 (1981) 114–133.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

    Google Scholar 

  4. E. Leiss, Succinct Representation of Regular Languages by Boolean Automata. Theoretical Computer Science 13 (1981) 323–330.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Leiss, Succinct Representation of Regular Languages by Boolean Automata II. Theoretical Computer Science 38 (1985) 133–136.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. R. Meyer and M. J. Fischer, Economy of Description by Automata, Grammars, and Formal Systems. Proc. of the 12th Annual IEEE Symposium on Switching and Automata Theory, October 1971, Michigan, 188–191.

    Google Scholar 

  7. L. van Zijl, Generalized Nondeterminism and the Succinct Representation of Regular Languages. PhD dissertation, Stellenbosch University, March 1997. http://www.cs.sun.ac.za/~lynette/boek.ps.gz

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Zijl, L. (2002). Supernondeterministic Finite Automata. In: Watson, B.W., Wood, D. (eds) Implementation and Application of Automata. CIAA 2001. Lecture Notes in Computer Science, vol 2494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36390-4_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-36390-4_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00400-4

  • Online ISBN: 978-3-540-36390-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics