Skip to main content

A Steganographic Embedding Undetectable by JPEG Compatibility Steganalysis

  • Conference paper
  • First Online:
Information Hiding (IH 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2578))

Included in the following conference series:

Abstract

Steganography and steganalysis of digital images is a cat-and-mouse game. In recent work, Fridrich, Goljan and Du introduced a method that is surprisingly accurate at determining if bitmap images that originated as JPEG files have been altered (and even specifying where and how they were altered), even if only a single bit has been changed. However, steganographic embeddings that encode embedded data in the JPEG coefficients are not detectable by their JPEG compatibility steganalysis. This paper describes a steganographic method that encodes the embedded data in the spatial domain, yet cannot be detected by their steganalysis mechanism. Furthermore, we claim that our method can also be used as a steganographic method on files stored in JPEG format. The method described herein uses a novel, topological approach to embedding. The paper also outlines some extensions to the proposed embedding method.

Research supported by the Office of Naval Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Anderson. Stretching the limits of steganography. In R. Anderson, editor, Information Hiding 1996, volume LNCS 1174, pages 39–48. Springer, 1996. 258

    Google Scholar 

  2. R. Anderson. Security Engineering. Wiley, 2001. 272

    Google Scholar 

  3. J. Dugundji. Topology. Allyn and Bacon, 1976. 267

    Google Scholar 

  4. J. J. Eggers, R. Bäuml, and B. Girod. A communications approach to image steganography. In SPIE Electronic Imaging 2002, Security and Watermarking of Multimedia Contents IV, volume 4675, pages 26–37, San Jose, USA, Jan. 2002. 259

    Google Scholar 

  5. J. Fridrich. Methods for detecting changes in digital images. In 6th IEEE International Workshop on Intelligent Signal Processing and Communication Systems (ISPACS’98), Melbourne, Australia, 4-6 November 1998. 258

    Google Scholar 

  6. J. Fridrich, M. Goljan, and R. Du. Steganalysis based on JPEG compatibility. In A. Tescher, B. Vasudev, and Jr. V.M. Bove, editors, SPIE Vol. 4518, Special session on Theoretical and Practical Issues in Digital Watermarking and Data Hiding, SPIE Multimedia Systems and Applications IV, pages 275–280, Denver, CO, 20-24 August 1998.258, 260, 262

    Google Scholar 

  7. N. F. Johnson, Z. Duric, and S. Jajodia. Information hiding: Steganography and watermarking-attacks and countermeasures. In Advances in Information Security 1. Kluwer Academic Publishers, 2001. 258

    Google Scholar 

  8. E. Kawaguchi and R.O. Eason. The principle and applications of bpcssteganography. In SPIE International Symposium on Voice, Video, and Data Communications: Multimedia Systems and Applications, pages 464–473, Boston, MA, November 2-4 1998. 259, 265, 273

    Google Scholar 

  9. E. Kawaguchi and M. Niimi. Modeling digital image into informative and noiselike regions by complexity measure. In Information Modeling and Knowledge Bases IX, pages 255–265. IOS Press, April 1998. 273

    Google Scholar 

  10. C. Kurak and J. McHugh. A cautionary note on image downgrading. In Computer Security Applications Conference, pages 153–159, San Antonio, Dec. 1992. 258, 259

    Google Scholar 

  11. Y. Lee and L. Chen. An adaptive image steganographic model based on minimum-error lsb replacement. In Ninth National Conference on Information Security, pages 8–15, Taichung, Taiwan, 14-15 May 1999. 273

    Google Scholar 

  12. Y. Lee and L. Chen. A high capacity image steganographic model. In IEE Vision, Image and Signal Processing, 2000. 259

    Google Scholar 

  13. L. M. Marvel, C.G. Boncelet Jr., and C.T. Retter. Spread spectrum image steganography. IEEE Trans. Image Processing, 8:1075–1083, August 1999. 272

    Article  Google Scholar 

  14. L. M. Marvel, G.W. Hartwig, and C. Boncelet. Compression-compatible fragile and semi-fragile tamper detection. In SPIE EI Photonics West, pages 131–139, San Jose, CA, 2000. 260

    Google Scholar 

  15. I. S. Moskowitz, L. Chang, and R.E. Newman. Capacity is the wrong paradigm. In New Security Paradigms Workshop, Virginia Beach, VA, USA, September 2002. 258, 259, 263

    Google Scholar 

  16. I. S. Moskowitz, N. F. Johnson, and M. Jacobs. A detection study of an NRL teganographic method. NRL Memorandum Report NRL/MR/5540-02-8635, Naval Research Laboratory, Code 5540, August 16 2002. 259

    Google Scholar 

  17. I. S. Moskowitz, G. E. Longdon, and L. Chang. A new paradigm hidden in steganography. In New Security Paradigms Workshop, pages 12–22, Ballycotton, County Cork, Ireland, Sept 2000. ACM (also appears in “The Privacy Papers” ed. R Herold, Auerbach Press 2002). 259

    Google Scholar 

  18. M. Niimi, H. Noda, and E. Kawaguchi. An image embedding in image by a complexity based region segmentation method. In ICIP, volume 3, pages 74–77, 1997. 273

    Google Scholar 

  19. W.B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Standard. Van Nostrand Reinhold, New York, 1993. 261

    Google Scholar 

  20. F.A.P. Petitcolas, R.J. Anderson, and M.G. Kuhn. Information hiding-a survey. Proceedings of the IEEE, 87(7):1062–1078, July 1999. 272

    Article  Google Scholar 

  21. N. Provos. Defending against statistical steganalysis. In 10th USENIX Security Symposium, pages 323–335, August 2001. 258, 272

    Google Scholar 

  22. N. Provos. Probabilistic methods for improving information hiding. Technical Report 01-1, CITI, University of Michigan, January 2001. 258, 272

    Google Scholar 

  23. N. Provos and P. Honeyman. Detecting steganographic content on the internet. Technical Report 01-1, CITI, University of Michigan, August 2001. 258

    Google Scholar 

  24. G. Strang. The discrete cosine transform. SIAM Review, 41(1):135–147, 1999. 261

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Westfeld. F5-a steganographic algorithm: High capacity despite better steganalysis. In S. Moskowitz(ed.) Information Hiding, LNCS 2137, IH 2001, pages 289–302. Springer, 2001. 270, 272

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Newman, R.E., Moskowitz, I.S., Chang, L., Brahmadesam, M.M. (2003). A Steganographic Embedding Undetectable by JPEG Compatibility Steganalysis. In: Petitcolas, F.A.P. (eds) Information Hiding. IH 2002. Lecture Notes in Computer Science, vol 2578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36415-3_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-36415-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00421-9

  • Online ISBN: 978-3-540-36415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics