Abstract
We present Global Index Grammars, a grammar formalism that uses a stack of indices associated to its productions. This formalism has restricted context-sensitive descriptive power. The recognition problem for this class of grammars is polynomial: the time complexity of the algorithm presented here is O(n 6).
There are many other equivalent or similar formalisms such as, range concatenation grammars, multiple context-free grammars[20], minimalist grammars[22].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. V. Aho. Indexed grammars-an extension of context-free grammars. Journal of the Association for Computing Machinery, 15(4):647–671, 1968.
T. Becker. HyTAG: a new type of Tree Adjoining Grammars for Hybrid Syntactic Representation of Free Order Languages. PhD thesis, University of Saarbruecken, 1993.
R. Book. Confluent and other types of thue systems. J. Assoc. Comput. Mach., 29:171–182, 1982.
P. Boullier. A cubic time extension of context-free grammars. Research Report RR-3611, INRIA, Rocquencourt, France, January 1999. 28 pages.
J. Castaño. Lr-2pda and global index grammars. Ms., Computer Science Dept. Brandeis University, available at http://www.cs.brandeis.edu/~jcastano/GIGs.ps, 2002.
A. Cherubini, L. Breveglieri, C. Citrini, and S. Reghizzi. Multipushdown languages and grammars. International Journal of Foundations of Computer Science, 7(3):253–292, 1996.
N. Chomsky and M.-P. Schützenberger. The algebraic theory of context-free languages. In P. Braffort and D. Hirschberg, editors, Computer Programming and Formal Systems, pages 118–161. North-Holland, Amsterdam, The Netherlands, 1963.
C. Culy. The complexity of the vocabulary of bambara. Linguistics and Philosophy, 8:345–351, 1985.
J. Dassow and G. Păun. Regulated Rewriting in Formal Language Theory. Springer, Berlin, Heidelberg, New York, 1989.
J. Dassow, G. Păun, and A. Salomaa. Grammars with controlled derivations. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, Vol. 2. Springer, Berlin, 1997.
J. Earley. An Efficient Context-free Parsing Algorithm. Communications of the ACM, 13:94–102, 1970.
G. Gazdar. Applicability of indexed grammars to natural languages. In U. Reyle and C. Rohrer, editors, Natural Language Parsing and Linguistic Theories, pages 69–94. D. Reidel, Dordrecht, 1988.
S. Ginsburg and M. Harrison. One-way nondeterministic real-time list-storage. Journal of the Association for Computing Machinery, 15, No. 3:428–446, 1968.
M. H. Harrison. Introduction to Formal Language Theory. Addison-Wesley Publishing Company, Inc., Reading, MA, 1978.
A. Joshi. Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural description? In D. Dowty, L. Karttunen, and A. Zwicky, editors, Natural language processing: psycholinguistic, computational and theoretical perspectives, pages 206–250. Chicago University Press, New York, 1985.
A. Joshi, K. Vijay-Shanker, and D. Weir. The convergence of mildly contextsensitive grammatical formalisms. In Peter Sells, Stuart Shieber, and Thomas Wasow, editors, Foundational issues in natural language processing, pages 31–81. MIT Press, Cambridge, MA, 1991.
J. Michaelis and M. Kracht. Semilinearity as a syntactic invariant. In Christian Retoré, editor, LACL’96: First International Conference on Logical Aspects of Computational Linguistics, pages 329–345. Springer-Verlag, Berlin, 1997.
S. Rajasekaran. Tree-adjoining language parsing in o(n6) time. SIAM J. of Computation, 25, 1996.
G. Satta. Tree-adjoining grammar parsing and boolean matrix multiplication. Computational linguistics, 20, No. 2, 1994.
H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-free grammars; theor, 1991.
S.M. Shieber. Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8:333–343, 1985.
E. P. Stabler. Derivational minimalism. Lecture notes in computer science, 1328, 1997.
M. Tomita. An efficinte augmented-context-free parsing algorithm. Computational linguistics, 13:31–46, 1987.
Daniel A. Walters. Deterministic context-sensitive languages: Part ii. Information and Control, 17:41–61, 1970.
C. Wartena. Grammars with composite storages. In Proceedings of the Conference on Logical Aspects of Computational Linguistics (LACL’ 98), pages 11–14, Grenoble, 1998.
D. Weir. Characterizing mildly context-sensitive grammar formalisms. PhD thesis, University of Pennsylvania, 1988.
D. J. Weir. A geometric hierarchy beyond context-free languages. Theoretical Computer Science, 104(2):235–261, 1992.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castaño, J.M. (2003). GIGs: Restricted Context-Sensitive Descriptive Power in Bounded Polynomial-Time. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2003. Lecture Notes in Computer Science, vol 2588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36456-0_3
Download citation
DOI: https://doi.org/10.1007/3-540-36456-0_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00532-2
Online ISBN: 978-3-540-36456-6
eBook Packages: Springer Book Archive