Skip to main content

Propositionalization for Clustering Symbolic Relational Descriptions

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2583))

Included in the following conference series:

Abstract

Propositionalization has recently received much attention in the ILP community as a mean to learn efficiently non-determinate concepts using adapted propositional algorithms. This paper proposes to extend such an approach to unsupervised learning from symbolic relational description. To help deal with the known combinatorial explosion of the number of possible clusters and the size of their descriptions, we suggest an approach that gradually increases the expressivity of the relational language used to describe the classes. At each level, only the initial object descriptions that could benefit from such an enriched generalization language are propositionalized. This latter representation allows us to use an efficient propositional clustering algorithm. This approach is implemented in the CAC system. Experiments on a large Chinese character database show the interest of using KIDS to cluster relational descriptions and pinpoint current problems for analyzing relational classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Dor A., Shamir P. & Yakhini Z.: Clustering Gene Expression Patterns. Journal of Computational Biology, 6(3/4). (1999) 281–297.

    Article  Google Scholar 

  • Bournaud I., Ganascia J.-G.: Accounting for Domain Knowledge in the Construction of a Generalization Space, ICCS’97, Lectures Notes in AI, 1257, Springer-Verlag (1997) 446–459.

    Google Scholar 

  • Carpineto C., Romano G.: GALOIS: An order-theoretic approach to conceptual clustering, Tenth International Conference on Machine Learning (ICML) (1993).

    Google Scholar 

  • Cheeseman P., Kelly J., Self M., Stutz J., Taylor W., & Freeman D.: AutoClass: A Bayesian Classification System. Proceedings of the Fifth International Conference on Machine Learning, Ann Arbor, MI. June 12-14 1988. Morgan Kaufmann Publishers, San Francisco. (1988) 54–64.

    Google Scholar 

  • Chein M., Mugnier M.L.: Conceptual Graphs: Fundamental Notions, Revue d’Intelligence Artificielle, 6(4) (1992) 365–406.

    Google Scholar 

  • Clément K.: Monogenic forms of obesity: from mouse to human. Annal of Endocrinology, 61(1). (2000) 39–49.

    Google Scholar 

  • Cohen W.: Pac-learning Nondeterminate Clauses. Twelth National Conference on Arti ficial Intelligence. (1994) 676–681.

    Google Scholar 

  • Cook D. J., Holder L. B.: Substructure discovery using minimum description length and background knowledge, Journal of Artificial Intelligence Research 1 (1994) 231–255.

    Google Scholar 

  • Dehaspe L., Toivonen H.: Frequent query discovery: a unifying ILP approach to association rules mining. Technical Report CW-258, Department of Computer Science, Katholieke Universiteit Leuven, March 1998.

    Google Scholar 

  • De Raedt, L. (1998). Attribute-Value Learning versus Inductive Logic Programming: The missing links. European Conference on Machine Learning (ECML), Springer-Verlag.

    Google Scholar 

  • De Raedt, L. and H. Blockeel (2001). Using Logical Decision Trees for Clustering. IJCAI 2001.

    Google Scholar 

  • Diday E.: La méthode des nuées dynamiques. Revue de Statistique Appliquées, XIX(1). (1971) 19–34.

    Google Scholar 

  • Fisher D.: Approaches to conceptual clustering, Ninth International Joint Conference on Artificial Intelligence (IJCAI), Los Angeles, CA, Morgan Kaufmann (1985).

    Google Scholar 

  • Fisher D.: Knowledge Acquisition Via Incremental Conceptual Clustering, Machine Learning: An Artificial Intelligence Approach, R. Michalski, J. Carbonell and T. Mitchell, San Mateo, CA, Morgan Kaufmann, II (1987) 139–172.

    Google Scholar 

  • Fisher D.: Iterative Optimization and Simplification of Hierarchical Clusterings. Journal of Artificial Intelligence Research 4 (1996) 147–179.

    MATH  Google Scholar 

  • Flach P. and Lachiche N.: Confirmation-Guided Discovery of First-Order Rules with Tertius. Machine Learning, Special issue on unsupervised learning, Vol. 42, Number 1/2, Kluwer, (2001) 61–95.

    MATH  Google Scholar 

  • Gennari J. H., Langley P., Fisher D.: Models of incremental concept formation, Artificial Intelligence40–1(3) (1989) 11–61.

    Article  Google Scholar 

  • Giordana, A. and L. Saitta (2000). Phase Transitions in Relational Learning. Machine Learning Journal 41(2): 217-.

    Google Scholar 

  • Haussler D.: Learning Conjunctive Concepts in Structural Domains, Machine Learning (4), (1989) 7–40.

    Google Scholar 

  • Ketterlin A., Gancarski P., Korczak J.J.: Conceptual clustering in Structured databases: a Practical Approach, Proceedings of the Knowledge Discovery in Databases, KDD’95, AAAI Press (1995).

    Google Scholar 

  • Kietz, J.-U. and S. Wrobel (1992). Controlling the Complexity of Learning in Logic through Syntactic and Task-Oriented Models. Inductive Logic Programming. S. Muggleton. London, Harcourt Brace Jovanovich: 335–359.

    Google Scholar 

  • Lavrac, N. and P. A. Flach (2001). An extended transformation approach to inductive logic programming. ACM Transactions on Computational Logic 2(8): 458–494.

    Article  Google Scholar 

  • Liquiére M., Sallantin J.: Structural Machine Learning with Galois Lattice and Graphs, Fifteen International Conference on Machine Learning, (ICML), (1998).

    Google Scholar 

  • Michalski R. S., Stepp R. E.: An application of AI techniques to structuring objects into an optimal conceptual hierarchy, Seventh International Joint Conference on Artificial Intelligence, (IJCAI) (1981).

    Google Scholar 

  • Mineau G., Gecsei J., Godin R.: Structuring knowledge bases using Automatic Learning, Sixth International Conference on Data Engineering, Los Angeles, USA (1990).

    Google Scholar 

  • Muggleton, S., Raedt L. D.: Inductive Logic Programming: Theory and Methods, Journal of Logic Programming 19(20) (1994) 629–679.

    Article  MathSciNet  Google Scholar 

  • Sowa J. F.: Conceptual Structures: Information Processing in Mind and Machine, Addisson-Wesley Publishing Company (1984).

    Google Scholar 

  • Silverstein, G. and M. J. Pazzani (1991). Relational clichés: Constraining constructive induction during relational learning. 8th IWML, Morgan Kaufmann. Wille, R.: Restructuring Lattice Theory. Symposium of Ordered Sets, I. Rival (eds). (1982) 445–470.

    Google Scholar 

  • Wilson D.R. & Martinez T.R.: Reduction Techniques for Instance-Based Learning Algorithms. Machine Learning, 38(3). (2000) 257–268.

    Article  MATH  Google Scholar 

  • Zucker J.-D., Ganascia J.-G. Changes of Representation for Efficient Learning in Structural Domains. International Conference in Machine Learning (ICML’96), Morgan Kaufmann (1996).

    Google Scholar 

  • Zucker, J.-D., J.-G. Ganascia, et I. Bournaud (1998). Relational Knowledge Discovery in a Chinese Characters Database. Applied Artificial Intelligence 12(5): 455–488.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bournaud, I., Courtine, M., Jean-Daniel, Z. (2003). Propositionalization for Clustering Symbolic Relational Descriptions. In: Matwin, S., Sammut, C. (eds) Inductive Logic Programming. ILP 2002. Lecture Notes in Computer Science(), vol 2583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36468-4_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36468-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00567-4

  • Online ISBN: 978-3-540-36468-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics