Skip to main content

The Bundle Method for Hard Combinatorial Optimization Problems

  • Chapter
  • First Online:
Combinatorial Optimization — Eureka, You Shrink!

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2570))

Abstract

Solving the well known relaxations for large scale combinatorial optimization problems directly is out of reach. We use Lagrangian relaxations and solve it with the bundle method. The cutting plane model at each iteration which approximates the original problem can be kept moderately small and we can solve it very quickly. We report successful numerical results for approximating maximum cut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Barahona. The max-cut problem on graphs not contractible to K 5. Operations Research Letters, 2(3):107–111, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Barahona and R. Anbil. The volume algorithm: producing primal solutions with a subgradient method. Mathematical Programming, 87(3):385–399, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Barahona and A. R. Mahjoub. On the cut polytope. Mathematical Programming, 36:157–173, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim., 10(2):443–461 (electronic), 2000.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem. Mathematical Programming, 62(3):557–574, 1993.

    Article  MathSciNet  Google Scholar 

  6. M. X. Goemans. Semidefinite programming in combinatorial optimization. Mathematical Programming, 79(1–3):143–161, 1997.

    MathSciNet  Google Scholar 

  7. M. X. Goemans and D. P. Williamson..878-approximation algorithms for MAX CUT and MAX 2SAT. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pages 422–431, Montréal, Québec, Canada, 1994.

    Google Scholar 

  8. M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145, 1995. preliminary version, see [7].

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Grötschel and G. L. Nemhauser. A polynomial algorithm for the max-cut problem on graphs without long odd cycles. Mathematical Programming, 29:28–40, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on Computing, 4:221–225, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Helmberg, K. C. Kiwiel, and F. Rendl. Incorporating inequality constraints in the spectral bundle method. In R. E. Bixby, E. A. Boyd, and R. Z. Ríos-Mercado, editors, Integer Programming and Combinatorial Optimization, volume 1412 of Lecture Notes in Computer Science, pages 423–435. Springer, 1998.

    Chapter  Google Scholar 

  12. C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM Journal on Optimization, 10(3):673–696, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior point method for semidefinite programming. SIAM Journal on Optimization, 6(2):342–361, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Håstad. Some optimal inapproximability results. In Proceedings of the 29th ACM Symposium on Theory of Computing (STOC), pages 1–10, 1997.

    Google Scholar 

  15. M. Jünger, F. Barahona, and G. Reinelt. Experiments in quadratic 0-1 programming. Mathematical Programming, 44(2):127–137, 1989.

    MathSciNet  MATH  Google Scholar 

  16. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103, New York, 1972. Plenum Press.

    Google Scholar 

  17. R. M. Karp. On the computational complexity of combinatorial problems. Networks, 5(1):45–68, 1975.

    MATH  Google Scholar 

  18. K. C. Kiwiel. Methods of Descent of Nondifferentiable Optimization, volume 1133 of Lecture Notes in Mathematics. Springer, Berlin, 1985.

    MATH  Google Scholar 

  19. K. C. Kiwiel. Survey of bundle methods for nondifferentiable optimization. Math. Appl. Jan. Ser.6, 6:263–282, 1989.

    MathSciNet  Google Scholar 

  20. K. C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical Programming, 46:105–122, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Lemarechal. Bundle methods in nonsmooth optimization. In Claude Lemarechal and Robert Mifflin, editors, Proceedings of the IIASA Workshop, vol. 3, Nonsmooth Optimization, March 28–April 8, pages 79–102. Pergamon Press, 1978, 1977.

    Google Scholar 

  22. C. Lemaréchal, A. Nemirovskii, and Yu. Nesterov. New variants of bundle methods. Mathematical Programming, 69:111–147, 1995.

    Article  MathSciNet  Google Scholar 

  23. L. Lovász. Semidefinite programs and combinatorial optimization. Lecture Notes, 1995.

    Google Scholar 

  24. M. Laurent, S. Poljak, F. Rendl. Connections between semidefinite relaxations of the max-cut and stable set problems. Mathematical Programming, 77(2):225–246, 1997.

    MathSciNet  Google Scholar 

  25. B. Mohar and S. Poljak. Eigenvalues in combinatorial optimization. In Combinatorial Graph-Theoretical Problems in Linear Algebra, IMA Vol. 50. Springer-Verlag, 1993.

    Google Scholar 

  26. G. I. Orlova and Ya.G. Dorfman. Finding the maximum cut in a graph. Engineering Cybernetics, 10(3):502–506, 1972.

    MathSciNet  MATH  Google Scholar 

  27. S. Poljak and F. Rendl. Node and edge relaxations for the max-cut problem. Computing, 52:123–127, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Poljak and F. Rendl. Nonpolyhedral relaxations of graph-bisection problems. SIAM Journal on Optimization, 5(3):467–487, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Rendl. Semidefinite programming and combinatorial optimization. Applied Numerical Mathematics, 29:255–281, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Tyrrell Rockafellar. Convex Analysis, volume 28 of Princeton Mathematics Series. Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  31. H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM J. Optim., 2:121–152, 1992.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruber, G., Rendl, F. (2003). The Bundle Method for Hard Combinatorial Optimization Problems. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds) Combinatorial Optimization — Eureka, You Shrink!. Lecture Notes in Computer Science, vol 2570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36478-1_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36478-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00580-3

  • Online ISBN: 978-3-540-36478-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics