Skip to main content

A Software Simulation of Transition P Systems in Haskell

  • Conference paper
  • First Online:
Membrane Computing (WMC 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2597))

Included in the following conference series:

Abstract

P systems are a parallel and distributed computational model, based on the membrane structure notion. Membranes define regions. Inside regions, objects and rules are placed in order to make evolve the P system. Evolution is achieved by transitions between two consecutive system configurations. Therefore, a computation can be obtained as a transitions series between consecutive configurations. Where and how P systems can be implemented is nowadays an open problem, but implementation on digital computers could be one way to show the capabilities of such systems. This paper presents a transition P systems implementation in Haskell, based on a theoretical framework previously developed.

Work partially supported by contribution of EU commission under The Fifth Framework Programme, project “MolCoNet” IST-2001-32008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Arroyo, A.V. Baranda, J. Castellanos, C. Luengo, L.F. Mingo, A Recursive Algorithm for Describing Evolution in Transition P Systems, Pre-Proceedings of Workshop on Membrane Computing, Curtea de Arges,Romania, August 2001, Technical Report 17/01 of Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona, Spain, 2001, 19–30.

    Google Scholar 

  2. F. Arroyo, A.V. Baranda, J. Castellanos, C. Luengo, L.F. Mingo, Structures and Bio-Language to Simulate Transition P Systems on Digital Computers, in Multiset Processing. Mathematical, Computer Science, and Molecular Computing Points of View (C.S. Calude, Gh. Paun, G. Rozenberg, A. Salomaa, eds.), Lecture Notes in Computer Science 2235, Springer-Verlag, 2001, 1–16.

    Google Scholar 

  3. A.V. Baranda, J. Castellanos, F. Arroyo, R. Gonzalo, Towards an Electronic Implementation of Membrane Computing: A Formal Description of Nondeterministic Evolution in Transition P Systems, Proc. 7th Intern. Meeting on DNA Based Computers (N. Jonoska, N.C. Seeman, eds.), Tampa, Florida, USA, 2001, 273–282.

    Google Scholar 

  4. A.V. Baranda, J. Castellanos, R. Gonzalo, F. Arroyo, L.F. Mingo, Data Structures for Implementing Transition P Systems in Silico, Romanian J. of Information Science and Technology, 4, 1–2(2001), 21–32

    Google Scholar 

  5. G. Păun, Computing with Membranes, Journal of Computer and Systems Sciences, 61, 1 (2000) 108–143.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arroyo, F., Luengo, C., Baranda, A.V., de Mingo, L. (2003). A Software Simulation of Transition P Systems in Haskell. In: PĂun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. WMC 2002. Lecture Notes in Computer Science, vol 2597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36490-0_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-36490-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00611-4

  • Online ISBN: 978-3-540-36490-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics