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Abstract

We demonstrate that the unbounded fan-out gate is very powerful. Constant-depth
polynomial-size quantum circuits with bounded fan-in and unbounded fan-out over a fixed
basis (denoted by QNC0

f ) can approximate with polynomially small error the following gates:
parity, mod[q], And, Or, majority, threshold[t], exact[t], and Counting. Classically, we need
logarithmic depth even if we can use unbounded fan-in gates. If we allow arbitrary one-qubit
gates instead of a fixed basis, then these circuits can also be made exact in log-star depth.
Sorting, arithmetic operations, phase estimation, and the quantum Fourier transform with
arbitrary moduli can also be approximated in constant depth.

1 Introduction

In this paper, we study the power of shallow quantum circuits. Long quantum computations
encounter various problems with decoherence, hence we want to speed them up as much as
possible. We can exploit the following two types of parallelism:

1. Gates on different qubits can be applied at the same time.

2. Commuting gates can be applied to the same qubits at the same time.

The first approach is just the classical parallel computation. The second approach only
makes sense when the gates applied on the same qubits commute, i.e. AB = BA, otherwise
the outcome would be ambiguous. Being able to do this is a strong assumption, however there
are models of quantum computers, in which it is physically feasible: ion-trap computers [CZ95]
and bulk-spin resonance (NMR) [GC97]. The basic idea is that if two quantum gates com-
mute, so do their Hamiltonians and therefore we can apply their joint operation by performing
both evolutions at the same time. This type of research started after the Mølmer–Sørensen
paper [MS99]. Recently, a Hamiltonian implementing the fan-out gate (which is crucial for all
our simulations) has been proposed by Fenner [Fen03].

In our paper, we investigate how much the power of quantum computation would increase
if we allow such commuting gates. The computation in the stronger model must be efficient,
therefore we do not require the ability to perform any set of commuting gates. This is in
accordance with standard quantum computation, where we also allow only some gates. We
choose a representative, the so-called unbounded fan-out gate, which is a sequence of controlled-
not gates sharing one control qubit. We call it fan-out, because if all target qubits are zero,
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then the gate copies the classical source bit into n copies. We show that fan-out is in some
sense universal for all sets of commuting gates. In particular, the joint operation of any set
of commuting gates (that can be easily diagonalised) can be simulated by a constant-depth
quantum circuit using just one-qubit and fan-out gates. To achieve this, we generalise the
parallelisation method of [MN02, GHMP02] and adapt it to the constant-depth setting.

We state our results in terms of circuit complexity classes. Classically, the main classes
computed by constant-depth, polynomial-size circuits are:

NC0 with Not and bounded fan-in gates: And, Or,
AC0 with Not and unbounded fan-in gates: And, Or,
TC0 with Not and unbounded fan-in gates: And, Or, threshold[t] for all t,
AC0[q] with Not and unbounded fan-in gates: And, Or, mod[q],
ACC0 =

⋃

q AC
0[q].

The zero in the exponent means constant depth, in general NCk means (logk n)-depth circuits.
Several separations between these classes are known. Razborov [Raz87] proved that TC0 is
strictly more powerful than ACC0. Using algebraic methods, Smolensky [Smo87] proved that
AC0[q] 6= AC0[q′], where q, q′ are powers of distinct primes. In other words, threshold gates
cannot be simulated by constant-depth circuits with unbounded fan-in Or gates, and mod[q]
gates do not simulate each other.

The main quantum circuit classes corresponding to the classical classes are QNC0, QAC0,
QTC0, and QACC0. We use subscript ‘f’ to indicate circuits where we allow the fan-out gate (e.g.
QNC0

f ). Classically, fan-out (copying the result of one gate into inputs of other gates) is taken
for granted. Surprisingly, in contrast to the classical case, some of the quantum circuit classes
are the same. Moore [Moo99] proved that parity is equivalent to fan-out, i.e. QAC0

f = QAC0[2].
Green et al. [GHMP02] proved that allowing mod[q] gates with different moduli always leads
to the same quantum classes, i.e. QACC0 = QAC0[q] for every integer q ≥ 2.

In this paper, we extend these results and show that even exact[t] gates (which output
1 if the input is of Hamming weight t, and 0 otherwise) can be approximated with poly-
nomially small error by fan-out and single qubit gates in constant depth. Our simulations
have polynomially small error. Since exact[t] gates can simulate And, Or, threshold[t], and
mod[q] gates, we conclude that the bounded-error versions of the following classes are equal:
B-QNC0

f = B-QAC0
f = B-QTC0

f . The exact[t] gate can be approximated in constant depth
thanks to the parallelisation method. However, the simulation is not so straightforward as for
mod[q] in [GHMP02] and it works only with high probability.

We then introduce a so-called Or-reduction that converts n input bits x into log n output bits
y and preserves the Or function, i.e. x is nonzero if and only y is. We show how to implement it
exactly in constant depth and use it to achieve exact computation of Or and exact[t] in log-star
depth. (Circuits of log-star depth are defined in Section 5.) We also apply the Or-reduction to
decrease the size of most of our circuits.

Our results concerning the threshold[t] gate have several interesting implications. Siu et
al. [SBKH93] proved that sorting and integer arithmetic (addition and multiplication of n in-
tegers, and division with remainder) are computable by constant-depth threshold circuits. It
follows that all of them can be approximated in B-QNC0

f .
The last contribution of our paper concerns the quantum Fourier Transform (QFT). Cleve

and Watrous [CW00] published an elegant log-depth quantum circuit that approximates the
QFT. By optimising their methods to use the fan-out gate, we can approximate the QFT in
constant depth with polynomially small error. First, we develop a circuit for the QFT with
respect to a power-of-2 modulus, and then, using a technique of [HH99], we show that the QFT
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with respect to arbitrary moduli can be approximated too. Hence the QFT is in B-QNC0
f . The

QFT has many applications, one of which is the phase estimation of an unknown quantum state.
Shor’s original algorithm for factoring [Sho94] uses the QFT and the modular exponenti-

ation. Cleve and Watrous [CW00] have shown that it can be adapted to use modular mul-
tiplication of n integers. Since we prove that both the QFT and arithmetic operations are in
B-QNC0

f , polynomial-time bounded-error algorithms with oracle B-QNC0
f can factorise numbers

and compute discrete logarithms. We can make the following conclusions: First, if B-QNC0
f can

be simulated by a BPP machine, then factoring can be done in polynomial time by bounded-
error Turing machines. Second, since it unlikely that BQP = B-QNC0

f , factoring and discrete
logarithms are likely not the hardest things quantum computers can do.

2 Quantum circuits with unbounded fan-out

Quantum circuits resemble classical reversible circuits. A quantum circuit is a sequence of
quantum gates ordered into layers. The gates are consecutively applied in accordance with the
order of the layers. Gates in one layer can be applied in parallel. The size of a gate is the
number of affected qubits. The depth of a circuit is the number of layers and the size is the
total size of all its gates. A circuit can solve problems of a fixed input size, so we define families
of circuits containing one circuit for every input size. We consider only uniform families, whose
description can be generated by a log-space Turing machine.

A quantum gate is a unitary operator applied to some subset of qubits. We usually use
gates from a fixed universal basis (Hadamard gate, rotation by an irrational multiple of π, and
the controlled-not gate) that can approximate any quantum gate with good precision [ADH97].
The qubits are divided into 2 groups: Input/output qubits contain the description of the input
at the beginning and they are measured in the computational basis at the end. Ancilla qubits
are initialised to |0〉 at the beginning and the circuits usually clean them at the end, so that
the output qubits are in a pure state and the ancillas may be reused.

Since unitary evolution is reversible, every operation can be undone. Running the compu-
tation backward is called uncomputation and is often used for cleaning ancilla qubits.

2.1 Definition of quantum gates

Quantum circuits cannot use a naive quantum fan-out gate mapping every quantum superposi-
tion |φ〉|0〉 . . . |0〉 to |φ〉 . . . |φ〉 due to the no-cloning theorem [WZ82]. Such a gate is not linear,
let alone unitary. Instead, our fan-out gate copies only classical bits and the effect on superposi-
tions is determined by linearity. It acts as a controlled-not-. . . -not gate, i.e. it is an unbounded
sequence of controlled-not gates sharing one control qubit. Parity is a natural counterpart of
fan-out. It is an unbounded sequence of controlled-not gates sharing one target qubit.

Definition 1 The fan-out gate maps |y1〉 . . . |yn〉|x〉 → |y1 ⊕ x〉 . . . |yn ⊕ x〉|x〉, where x ⊕ y =
(x+ y)mod 2. The parity gate maps |x1〉 . . . |xn〉|y〉 → |x1〉 . . . |xn〉|y ⊕ (x1 ⊕ . . .⊕ xn)〉.

Example. As used in [Moo99], parity and fan-out can simulate each other in constant depth.

The Hadamard gate is H = 1√
2

(

1 1
1 −1

)

and it holds that H2 = I. If a controlled-not gate is

preceded and succeeded by Hadamard gates on both qubits, it just turns around. Since parity
is a sequence of controlled-not gates, we can turn around all of them in parallel. The circuit is
shown in Figure 1.
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Figure 1: Equivalence of parity and fan-out
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=

Figure 2: Implementing an arbitrary controlled one qubit gate

In this paper, we investigate the circuit complexity of, among others, these gates:

Definition 2 Let x = x1 . . . xn and let |x| denote the Hamming weight of x. The following
(n+ 1)-qubit gates map |x〉|y〉 → |x〉|y ⊕ g(x)〉, where g(x) = 1 iff

|x| > 0: Or, |x| = n: And (Toffoli), |x| ≥ n
2 : majority,

|x|mod q = 0: mod[q], |x| ≥ t: threshold[t], |x| = t: exact[t],

A counting gate is any gate that maps |x〉|0m〉 → |x〉| |x| 〉 for m = ⌈log(n+ 1)⌉.

2.2 Quantum circuit classes

Definition 3 QNCf(d(n)) contains operators computed exactly (i.e. without error) by uniform
families of quantum circuits with fan-out of depth O(d(n)), polynomial size, and over a fixed
basis. QNCk

f = QNCf(log
k n). R-QNCk

f contains operators approximated with one-sided, and
B-QNCk

f with two-sided, polynomially small error.

Remark. The circuits below are over a fixed universal basis, unless explicitly mentioned oth-
erwise. Some of our circuits need arbitrary one-qubit gates to be exact. For simplicity, we
sometimes include several fixed-size gates (e.g. the binary Or gate and controlled one-qubit
gates) in our set of basis gates. This inclusion does not influence the asymptotic depth of our
circuits, since every s-qubit quantum gate can be decomposed into a sequence of one-qubit and
controlled-not gates of length O

(

s34s
)

[BBC+95].
For every one-qubit gate U , there exist one-qubit gates A,B,C and a rotation P = Rz (α)

such that the controlled gate U is computed by the constant-depth circuit shown in Figure 2
[BBC+95, Lemma 5.1]. If a qubit controls more one-qubit gates, then we can still use this
method in constant depth. We just replace the controlled-not gate by the fan-out gate and the
rotations P are multiplied.

3 Parallelisation method

In this section, we describe a general parallelisation method for achieving very shallow circuits.
We then apply it to the rotation by Hamming weight and the rotation by value, and show how
to compute them in constant depth.
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n

k

n

. . .

. . .

V1

V2

Vn

|0〉

|0〉

|0〉

|0〉

T †T

Figure 4: A parallelised circuit performing U = T †(
∏n

i=1 V
xi
i )T =

∏n
i=1 U

xi
i

3.1 General method

The unbounded fan-out gate is universal for commuting gates in the following sense: Using
fan-out, gates can be applied to the same qubits at the same time whenever (1) they commute,
(2) we know the basis in which they all are diagonal, and (3) we can efficiently change into the
basis. The method reduces the depth, but may in general require the use of ancilla qubits.

Lemma 1 [HJ85, Theorem 1.3.19] For every set of pairwise commuting unitary gates, there
exists an orthogonal basis in which all the gates are diagonal.

Theorem 2 [MN02, GHMP02] Let {Ui}ni=1 be pairwise commuting gates on k qubits. Gate
Ui is controlled by qubit |xi〉. Let T be a gate changing the basis according to Lemma 1. There
exists a quantum circuit with fan-out computing U =

∏n
i=1 U

xi
i having depth maxni=1 depth(Ui)+

4 · depth(T ) + 2, size
∑n

i=1 size(Ui) + (2n+ 2) · size(T ) + 2n, and using (n− 1)k ancillas.

Proof. Consider a circuit that applies all Ui sequentially. Put TT † = I between Ui and
Ui+1. The circuit is shown in Figure 3. Take Vi = T †UiT as new gates. They are diagonal
in the computational basis, hence they just impose some phase shifts. Multiple phase shifts
on entangled states multiply, so can be applied in parallel. We use fan-out gates twice: first
to create n entangled copies of target qubits and then to destroy the entanglement. The final
circuit with the desired parameters is shown in Figure 4. ✷

Example. As used in [Moo99], it is simple to prove that mod[q] ∈ QNC0
f . Each input qubit

controls one increment modulo q on a counter initialised to 0. At the end, we obtain |x|mod q.
The modular increments commute and thus can be parallelised. Since q is fixed, changing the
basis and the increment can both be done in constant depth.
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2

Figure 5: Rotation by Hamming weight and value

3.2 Rotation by Hamming weight and value

In this paper, we often use a rotation by Hamming weight Rz (ϕ|x|) and a rotation by value
Rz (ϕx), where Rz (α) is one-qubit rotation around the z-axis by angle α: Rz (α) = |0〉〈0| +
eiα|1〉〈1|. They can both be computed in constant depth.

Lemma 3 For every angle ϕ, there exist constant-depth, linear-size quantum circuits with fan-
out computing Rz (ϕ|x|) and Rz (ϕx) on input x = xn−1 . . . x1x0.

Proof. The left circuit in Figure 5 shows how to compute the rotation by Hamming weight.
Each input qubit controls Rz (ϕ) on the target qubit, hence the total angle is ϕ|x|. These
controlled rotations are parallelised using the parallelisation method. The right circuit shows
the rotation by value. It is similar to the rotation by Hamming weight, only the input qubit
|xj〉 controls Rz

(

ϕ2j
)

, hence the total angle is ϕ
∑n−1

j=0 2
jxj = ϕx. ✷

Remark. The construction uses rotations Rz (ϕ) for arbitrary ϕ ∈ R. However, we are only
allowed to use a fixed set of one-qubit gates. It is easy to see that every rotation can be
approximated with polynomially small error by Rz (θq) = (Rz (θ))

q, where sin θ = 3
5 and q is a

polynomially large integer [ADH97]. These q rotations commute, so can be applied in parallel
and the depth is preserved. The approximation can be kept down to polynomially small error
while increasing the size of the circuit only polynomially.

4 Constant-depth approximate circuits

4.1 Or gate

It is easy to see that the rotation by Hamming weight of a string y of length m with angle
ϕ = 2π

m can be used to distinguish the zero string y = 0m from strings with approximately m
2

ones. We, however, want to distinguish the zero string from all nonzero strings. It turns out
that if we compute m = O(n log n) rotations by Hamming weight of the input x with angles
distributed evenly around the circle, we obtain a string y that is either zero (for x = 0n), or has
expected Hamming weight m

2 (for x 6= 0n). By combining these two results, we can approximate
the Or gate and, with a minor modification, also the exact[t] gate in constant depth.
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Let w ∈ N0 and let ϕ be an angle. Define a notation for the following one-qubit state:

|µwϕ〉 = (H ·Rz (ϕw) ·H) |0〉 = 1 + eiϕw

2
|0〉+ 1− eiϕw

2
|1〉. (1)

By Lemma 3, |µ|x|ϕ 〉 can be computed in constant depth and linear size.

Theorem 4 Or ∈ R-QNC0
f . In particular, Or can be approximated with one-sided error 1

n in
constant depth and size O

(

n2 log n
)

.

Proof. Let n denote the size of the input x. Let m = a ·n, where a will be chosen later. For all

k ∈ {0, 1, . . . ,m− 1}, compute in parallel |yk〉 = |µ|x|ϕk〉 for angle ϕk = 2π
m k. If |yk〉 is measured

in the computational basis, the expected value of the outcome Yk ∈ {0, 1} is

E[Yk] =

∣

∣

∣

∣

∣

1− eiϕk|x|

2

∣

∣

∣

∣

∣

2

=
∣

∣

∣
e−iϕk|x|

∣

∣

∣
·
∣

∣eiϕk |x| + e−iϕk|x| − 2
∣

∣

4
=

1− cos(ϕk|x|)
2

.

If all these m qubits |y〉 are measured, the expected Hamming weight of all Y ’s is

E[|Y |] = E

[

m−1
∑

k=0

Yk

]

=
m

2
− 1

2

m−1
∑

k=0

cos

(

2πk

m
|x|

)

=

{

0 if |x| = 0,
m
2 if |x| 6= 0.

The qubits |y〉 are actually not measured, but their Hamming weight |y| controls another rota-
tion on a new ancilla qubit |z〉. So compute |z〉 = |µ|y|2π/m〉. Let Z be the outcome after |z〉 is

measured. If |y| = 0, then Z = 0 with certainty. If
∣

∣|y| − m
2

∣

∣ ≤ m√
n
, then

P [Z = 0] =

∣

∣

∣

∣

∣

1 + ei
2π
m

|y|

2

∣

∣

∣

∣

∣

2

=
1 + cos

(

2π
m |y|

)

2
≤

1− cos 2π√
n

2
= O

(

1

n

)

.

Assume that |x| 6= 0. We want to upper-bound the probability of the bad event that |Y |
is not close to m

2 . Since 0 ≤ Yk ≤ 1, we can use Hoeffding’s Lemma 5 below and obtain
P [

∣

∣|Y | − m
2

∣

∣ ≥ εm] ≤ 1
2ε2m

. Fix a = log n and ε = 1√
n
. Now, P [

∣

∣|y| − m
2

∣

∣ ≥ m√
n
] ≤ 1

2m/n =
1
2a = 1

n . The probability that we observe the incorrect result Z = 0 is at most the sum of the
probabilities of the two bad events, i.e. O

(

1
n

)

. Hence

P [Z = 0] =

{

1 if |x| = 0,
O
(

1
n

)

if |x| 6= 0.

The circuit has constant depth and size O(mn) = O
(

n2 log n
)

. It is outlined in Figure 6. The
figure is slightly simplified: unimportant qubits and uncomputation of ancillas are omitted. ✷

Lemma 5 (Hoeffding [Hoe63]) If Y1, . . . , Ym are independent random variables bounded by
ak ≤ Yk ≤ bk, then, for all ε > 0,

P [|S − E[S]| ≥ εm] ≤ 2 exp
−2m2ε2

∑m
k=1(bk − ak)2

, where S =
∑m

i=k Yk.
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m
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|µ|y|
2π
m

〉
|z〉

|x1 . . . xn〉

|00 . . . 0〉

|00 . . . 0〉

|y〉

Figure 6: Constant depth circuit approximating Or

Remark. Since the outcome z of the circuit in Figure 6 is a classical bit, we can save it in an
ancilla qubit by applying a controlled-not gate and clean |y〉 by uncomputation. It remains to
prove that the intermediate qubits |y〉 need not be measured, in order to be able to uncompute
them. We show above that the output qubit is a good approximation of the logical Or, provided
|y〉 is immediately measured. By the principle of deferred measurement, we can use controlled
quantum operations and measure |y〉 at the end. However, the output bit is close to a classical
bit (the distance depends on the error of the computation), thus it is only slightly entangled
with |y〉, and hence it does not matter whether |y〉 is measured.

Definition 4 Let log(k) x denote the k-times iterated logarithm log log . . . log x. The log-star
function, log∗ x, is the maximum number of iterations k such that log(k) x exists and is real.1

Remark. If we require error 1
nc , we create c copies and compute the exact Or of them by a

binary tree of Or gates. The tree has depth log c = O(1). In Section 6.1, we show how to
approximate Or in constant depth and size O(n log(k) n) for any constant k. In Section 6.2, we
show how to compute Or exactly in log-star depth and linear size.

4.2 Exact[t] and threshold[t] gates

Theorem 6 exact[t] ∈ R-QNC0
f .

Proof. We slightly modify the circuit for Or. As outlined in Figure 7, by adding the rotation

Rz (−ϕt) to the rotation by Hamming weight in the first layer, we obtain |µ|x|−t
ϕ 〉 instead of

|µ|x|ϕ 〉. The second layer stays the same. If the output qubit |z〉 is measured, then

P [Z = 0] =

{

1 if |x| = t,
O
(

1
n

)

if |x| 6= t.

We obtain an approximation of the exact[t] gate with one-sided polynomially small error. ✷

Remark. Other gates are computed from the exact[t] gate by standard methods. For example,
threshold[t] can be computed as the parity of exact[t], exact[t+1], . . . , exact[n]. The depth stays
constant and the size is just n-times bigger, i.e. O

(

n3 log n
)

, hence threshold[t] ∈ B-QNC0
f . In

Section 6.3, we show how to approximate exact[t], threshold[t], and counting in constant depth
and size O(n log n).

1The log-star of the estimated number of atoms in the universe is 5. Consequently, for the computational
problems we consider in this paper, the log-star is in practice at most 5.
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|0〉

|0〉

|0〉

|0〉

|µ|x|−t
ϕ 〉

added

|x0〉
|x1〉
|xn−1〉

rotation

Figure 7: Rotation by Hamming weight with added rotation

4.3 Arithmetic operations

Using threshold gates, one can do arithmetic operations in constant depth. The following
circuits take as part of the input an ancilla register in state |0〉 and output the result of the
computation in that register.

Theorem 7 The following functions are in B-QNC0
f : addition and multiplication of n integers,

division of integers with remainder, and sorting of n integers.

Proof. By [SBKH93], these functions are computed by constant-depth,2 polynomial-size thresh-
old circuits. A threshold circuit is built of weighted threshold gates. It is simple to prove that
the weighted threshold gate (with polynomially large integer weights) also is in B-QNC0

f . One
only needs to rotate the phase of the quantum state in Lemma 3 by integer multiples of the
basic angle. ✷

In the following section, we require a reversible version of modular addition.

Definition 5 Let q be an n-bit integer and x1, . . . , xm ∈ Zq. The reversible addition gate maps
addm : |q〉|x1〉 . . . |xm〉 → |q〉|x1〉 . . . |xm−1〉|y〉, where y = (

∑m
i=1 xi)mod q.

Lemma 8 addm ∈ B-QNC0
f .

Proof. By Theorem 7, y = (
∑m

i=1 xi)mod q can be approximated in constant depth and
polynomial size. The result is, however, stored into ancilla qubits. Hence we have to erase xm,
which we may achieve by first negating the contents in y by |y〉 → | − y〉, computing the sum
w = y +

∑m−1
i=1 xi in a fresh ancilla, do a bitwise control-not of w into xm, uncompute w, and

finally re-negate y. We then swap the ancillas |y〉 with the erased qubits in |xm〉. ✷

2The depths are really small, from 2 to 5.
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4.4 Quantum Fourier transform

The QFT is a very powerful tool used in several quantum algorithms, e.g. factoring of integers
and computing the discrete logarithm [Sho94].

Definition 6 The quantum Fourier transform with respect to modulus q performs the Fourier
transform on the quantum amplitudes of the state, i.e. it maps

Fq : |x〉 → |ψx〉 =
1√
q

q−1
∑

y=0

ωxy|y〉, where ω = e2πi/q, (2)

for x ∈ {0, 1, . . . , q − 1} and it behaves arbitrarily on the other states.

4.4.1 QFT with a power-of-2 modulus

Let q = 2n. Coppersmith has shown in [Cop94] how to compute the QFT in quadratic depth,
quadratic size, and without ancillas. The depth has further been improved to linear [folklore].
Cleve and Watrous have shown in [CW00] that the QFT can be approximated with error ε in
depth O

(

log n+ log log 1
ε

)

and size O
(

n log n
ε

)

. They also show that if only gates acting on a
constant number of qubits are allowed (in particular, the fan-out gate is not allowed), logarithmic
depth is necessary. We show that the approximate circuit for the QFT from [CW00] can be
compressed to constant depth, if we allow the fan-out gate.

Theorem 9 QFT ∈ B-QNC0
f .

Proof. The operator F2n : |x〉 → |ψx〉 can be computed by composing:

1. Fourier state construction (QFS): |x〉|0〉 . . . |0〉 → |x〉|ψx〉|0〉 . . . |0〉
2. Copying Fourier state (COPY): |x〉|ψx〉|0〉 . . . |0〉 → |x〉|ψx〉 . . . |ψx〉
3. Uncomputing phase estimation (QFP): |ψx〉 . . . |ψx〉|x〉 → |ψx〉 . . . |ψx〉|0〉
4. Uncomputing COPY: |ψx〉 . . . |ψx〉|0〉 → |ψx〉|0〉 . . . |0〉

The following lemmas show that each of these individual operators is in B-QNC0
f . ✷

Lemma 10 QFS ∈ QNC0
f .

Proof. QFS maps |x〉|0〉 → |x〉|ψx〉. Define |ρr〉 = |0〉+e2πir |1〉√
2

. It is simple to prove that

|ψx〉 = |ρx/21〉|ρx/22〉 . . . |ρx/2n〉.

|ψx〉 =
1√
2n

2n−1
∑

y=0

ωxy|y〉 = 1√
2n

2n−1
∑

y=0

n
⊗

k=1

ωx2n−kyn−k |yn−k〉

=
1√
2n

n
⊗

k=1

1
∑

b=0

(ω2n−kx)b|b〉 =
n

⊗

k=1

|0〉 + e2πix/2
k |1〉√

2
=

n
⊗

k=1

|ρx/2k〉.

The n qubits |ρx/2k〉 can be computed from x in parallel as follows: |ρx/2k〉 = Rz

(

2π
2k
x
) |0〉+|1〉√

2

is computed by the rotation by value (Lemma 3) in constant depth and linear size. ✷

10
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Figure 8: Measurement of |ρx/2k〉 in a random basis

Lemma 11 COPY ∈ B-QNC0
f .

Proof. COPY maps |ψx〉|0〉 . . . |0〉 → |ψx〉 . . . |ψx〉. Take the reversible addition gate modulo
2n: (add22n)|y〉|x〉 = |y〉|(x+ y)mod 2n〉. It is simple to prove that add−1 |ψy〉|ψx〉 = |ψx+y〉|ψx〉.

|ψy〉|ψx〉 =
1

2n

2n−1
∑

l,k=0

ωly+kx|l〉|k〉 →add−1
1

2n

∑

l,k

ωly+kx|l〉|k − l〉

=
1

2n

∑

l,m

ωly+(m+l)x|l〉|m〉 = 1

2n

∑

l,m

ωl(x+y)+mx|l〉|m〉 = |ψx+y〉|ψx〉.

Hence add−1 |ψ0〉|ψx〉 = |ψx〉|ψx〉. The state |ψ0〉 = H⊗n|0n〉 is easy to prepare in constant
depth. Furthermore, (addm2n)

−1|ψ0〉 . . . |ψ0〉|ψx〉 = |ψx〉 . . . |ψx〉|ψx〉, because the addition ofm−1
numbers into one register is equivalent to m − 1 consecutive additions of one number. Each
such a reversible addition copies |ψx〉 into 1 register. Note that the addm2n gate performs all
these additions in parallel. By Lemma 8, the reversible addition gate is in B-QNC0

f . ✷

Lemma 12 QFP ∈ B-QNC0
f .

Proof. QFP maps |ψx〉 . . . |ψx〉|0〉 → |ψx〉 . . . |ψx〉|x〉. By Cleve and Watrous [CW00, Section
3.3], we can compute x with probability at least 1 − ε from O

(

log n
ε

)

copies of |ψx〉 in depth
O
(

log n+ log log 1
ε

)

and size O
(

n log n
ε

)

. Use ε = 1
poly(n) . It is simple to convert their circuit

into constant depth, provided we have fan-out. The details are sketched below.
The input consists of m = O

(

log n
ε

)

copies of |ψx〉 = |ρx/21〉|ρx/22〉 . . . |ρx/2n〉. Measure each
|ρx/2k〉 m

2 times in the basis {|ρ0.01〉, |ρ0.11〉} and m
2 times in the Hadamard basis {|ρ0.00〉, |ρ0.10〉}.

The state |ρx/2k〉 = 1√
2
(|0〉 + e2πi(0.xk−1...x1x0)) lies on the middle circle of the Bloch sphere; it

is shown in Figure 8. If |ρx/2k〉 is in the white region, then the measurement in the first basis

tells whether xk−1 = 0 or 1 with probability at least 3
4 . If |ρx/2k〉 is in the shaded region, then

the measurement in the Hadamard basis tells whether xk−1 = xk−2 or ¬xk−2 (denoted by P,
N) with probability at least 3

4 .
For each k, perform the majority vote and obtain the correct answer zk ∈ {0, 1,P,N} with

error probability at most 1
2m = ε

n . The probability of having any error is at most n times
bigger, i.e. at most ε. Compute xn−1 . . . x1x0 from zn−1 . . . z1z0 in constant depth. The bit xk
is computed as follows:

1. If zkzk−1 . . . zl+1 ∈ {P,N} and zl ∈ {0, 1}, compute the parity of the number of N’s and
add it to zl (assuming z−1 = 0), otherwise return 0.
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2. Check and compute all prefixes l in parallel and take the logical Or of the results.

All the gates used (fan-out, parity, And, Or, majority) are in B-QNC0
f . ✷

4.4.2 QFT with an arbitrary modulus

Let q 6= 2n. Cleve and Watrous have shown in [CW00] that the QFT can be approximated with
error ε in depth O

(

(log log q)(log log 1
ε )
)

and size poly(log q+ log 1
ε ). We show that their circuit

can also be compressed into constant depth, if we use the fan-out gate. The relation between
quantum Fourier transforms with different moduli was described in [HH99].

Remark. We actually implement a slightly more general operation, when q is not a fixed
constant, but an n-bit input number. This generalised QFT maps |q〉|x〉 → |q〉|ψx〉. The
register |q〉 is implicitly included in all operations. We will henceforth omit it and the generalised
operations are denoted simply by QFTq, QFSq, COPYm

q , and QFPq.

Theorem 13 QFTq ∈ B-QNC0
f .

Proof. Let |dummyq,x〉 denote an unspecified quantum state depending on two parameters
q, x. The operator F ′

q : |x〉 → |ψx〉|dummyq,0〉 can be computed by composing:

1. QFSq: |x〉 → |x〉|ψx〉|dummyq,x〉
2. COPYm+1

q : → |x〉|ψx〉|dummyq,x〉
(

|ψx〉|dummyq,0〉
)⊗m

3. Uncomputing QFSq: → |x〉
(

|ψx〉|dummyq,0〉
)⊗m

4. Uncomputing QFPq: →
(

|ψx〉|dummyq,0〉
)⊗m

5. Uncomputing COPYm
q : → |ψx〉|dummyq,0〉,

where empty registers are omitted for clarity. The state |dummyq,0〉 is not entangled with |x〉
and hence it can be traced out. We obtain the quantum Fourier transform Fq. The following
lemmas show that each of these individual operators is in B-QNC0

f . ✷

Lemma 14 QFSq ∈ B-QNC0
f .

Proof. QFSq maps |x〉|0〉 → |x〉|ψx〉|dummyq,x〉 for some “garbage” state |dummyq,x〉. We will
show that QFSq is well approximated by a QFS with a power-of-2 modulus of the magnitude
q3. Let n = ⌈log q⌉. Take N = 3n and extend x by leading zeroes into N bits. Using Lemma 10,

perform QFS2N and obtain the state |x〉 1√
2N

∑2N−1
y=0 e

2πi

2N
xy|y〉.

Set u = ⌊2N/q⌋ and apply integer division by u to the second register, i.e. map |y〉 → |y1〉|y2〉,
where y1 = ⌊y/u⌋ ∈ {0, 1, . . . , q} and y2 = ymodu. This can be done reversibly in constant
depth by a few applications of Theorem 7 using the method from Lemma 8. The quantum state
can be written as

1√
2N

2N−1
∑

y=0

e
2πi

2N
xy|y1〉|y2〉 =

1√
2N

q−1
∑

y1=0

u−1
∑

y2=0

e
2πi

2N
x(y1u+y2)|y1〉|y2〉+ |w〉,

where |w〉 = 1√
2N

∑v−1
z=0 e

2πi

2N
x(qu+z)|q〉|z〉 and v = 2N modu = 2N − qu = 2N mod q < q. The

sum has been rearranged using y = y1u + y2. Now, ‖ |w〉 ‖=
√ v

2N
= O(2−n) is exponentially

small and so it can be neglected. Decompose the quantum state into the tensor product

1√
q

q−1
∑

y1=0

e
2πi
q

( q

2N
u)xy1 |y1〉 ⊗

√

q

2N

u−1
∑

y2=0

e
2πi

2N
xy2 |y2〉.

12



Now, u is exponentially close to 2N

q , because q
2N
u = 2N−v

2N
= 1 − O

(

2−2n
)

. Since xy1
q = O(2n),

the replacement of qu
2N

by 1 in the exponent causes only exponentially small error O(2−n). Hence
the quantum state is exponentially close to

1√
q

q−1
∑

y=0

e
2πi
q

xy|y〉 ⊗ 1√
u

u−1
∑

z=0

e
2πi

2N
xz|z〉 = |ψx〉|dummyq,x〉.

The “garbage” state |dummyq,x〉 arises as a byproduct of the higher precision 3n-bit arithmetic.
We clean it up later by uncomputing QFSq after copying |ψx〉; see the proof of Theorem 13. It
actually gets replaced by |dummyq,0〉 = 1√

u

∑u−1
z=0 |z〉, which does not depend on x and it thus

causes no harm. We have approximated QFSq in constant depth. ✷

Lemma 15 COPYm
q ∈ B-QNC0

f .

Proof. COPYm
q maps |ψx〉|0〉 . . . |0〉 → |ψx〉(|ψx〉|dummyq,0〉)⊗(m−1). The proof is similar

to the proof of Lemma 11. First, prepare m − 1 states |ψ0〉|dummyq,0〉 by applying QFSq
to |0〉|0〉 (Lemma 14). Second, use the inverse of the reversible addition modulo q to map
(addmq )−1 : |ψ0〉 . . . |ψ0〉|ψx〉 → |ψx〉 . . . |ψx〉|ψx〉 (Lemma 8). ✷

Lemma 16 QFPq ∈ B-QNC0
f .

Proof. QFPq maps |ψx〉 . . . |ψx〉|0〉 → |ψx〉 . . . |ψx〉|x〉. We use an idea similar to the proof of
Lemma 14. Let n = ⌈log q⌉ and N = 3n. Extend |ψx〉 by leading zeroes to N bits and apply

F †
2N

to them (Theorem 9). We obtain many copies of the state

F †
2N

(|0〉|ψx〉) =
1

√

2Nq

2N−1
∑

z=0





q−1
∑

y=0

e
−2πi

2N
zy+ 2πi

q
xy



 |z〉.

The exponent can be rewritten to 2πi(xq − z
2N

) ·y. Intuitively, if |z−2N x
q | ≤ 2N

8q , then |xq − z
2N

| ≤
1
8q , the absolute value of the angle in the exponent is at most π

4 for every y ∈ {0, 1, . . . , q − 1},
and the amplitudes sum up constructively. If z is not close to 2N x

q , then the amplitudes interfere
destructively. The quantum state has most of its amplitude on the good z’s. So we compute
reversibly by division with remainder an estimate x′ = ⌊ zq

2N
+ 1

2⌋. A detailed analyzis shows

that P [x′ = x] ≥ 1
2 + δ for some constant δ [CW00, HH99]. Here we do not present the details,

because our goal is the compression of the circuit from [CW00] into constant depth.
We transform all m = O

(

log n
ε

)

input quantum states |ψx〉 into m independent estimates
|x′〉. We then estimate all bits of x one-by-one from these m estimates by majority gates. Each
bit of x is wrong with probability at most 2−m = 2− log n

ε = ε
n . The probability of having an

error among the n bits of x is thus at most ε. Finally, save the estimation of x in the target
register and uncompute the divisions and the quantum Fourier transforms. With probability at
least 1− ε, the mapping QFPq has been performed. Use ε = 1

polyn . ✷
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4.5 Quantum phase estimation

The method of computing QFT2n can be also used for phase estimation.

Theorem 17 Given a gate Sx : |y〉|φ〉 → |y〉Rz

(

2πx
2n y

)

|φ〉 for basis states |y〉, where x ∈ Z2n is
unknown, we can determine x with probability at least 1− ε in constant depth, size O

(

n log n
ε

)

,
and using the Sx gate O

(

n log n
ε

)

times.

Proof. Obtain an estimate of x by applying the QFP to O
(

log n
ε

)

copies of the quantum state
|ψx〉 = |ρx/21〉|ρx/22〉 . . . |ρx/2n〉. Each |ρx/2k〉 can be computed by one application of Sx to

|2n−k〉 |0〉+|1〉√
2

, because |ρx/2k〉 = Rz

(

2πx
2k

) |0〉+|1〉√
2

= Rz

(

2πx
2n 2n−k

) |0〉+|1〉√
2

. ✷

5 Exact circuits of small depth

In the previous section, we have shown how to approximate the exact[t] gate in constant depth.
In this section, we show how to compute it exactly in log-star depth. The circuits in this section
use arbitrary one-qubit gates instead of a fixed basis, otherwise they would not be exact.

Lemma 18 The function Or on n qubits can be reduced exactly to Or on m = ⌈log(n + 1)⌉
qubits in constant depth and size O(n log n).

Proof. We use a technique similar to the proof of Theorem 4. Recall the quantum state |µwϕ〉
defined by equation (1) on page 7. For k ∈ {1, 2, . . . ,m}, compute in parallel |yk〉 = |µ|x|ϕk〉 for
angle ϕk = 2π

2k
. Let |y〉 = |y1y2 . . . ym〉.

• If |x| = 0, then 〈y|0m〉 = 1, because |yk〉 = |0〉 for each k.

• If |x| 6= 0, then 〈y|0m〉 = 0, because at least one qubit yk is one with certainty. Take
the unique decomposition of |x| into a product of a power of 2 and an odd number:
|x| = 2a(2b+ 1) for a, b ∈ N0. Then

〈1|ya+1〉 =
1− eiϕa+1|x|

2
=

1− ei
2π

2a+1 2
a(2b+1)

2
=

1− eiπ(2b+1)

2
=

1− eiπ

2
= 1.

It follows that x is non-zero if and only if y is. Hence the original problem is exactly reduced
to a problem of logarithmic size. ✷

Theorem 19 exact[t] ∈ QAC0
f .

Proof. Using the methods from Theorem 6 and Lemma 18, exact[t] can also be reduced to
Or of logarithmic size. The reduction has constant depth and size O(n log n). Hence exact[t] is
QNC0

f -reducible to Or, or simply exact[t] ∈ QAC0
f , because QAC0

f includes both QNC0
f and the

Or gate. ✷

Theorem 20 exact[t] ∈ QNCf(log
∗ n), i.e. exact[t] can be computed exactly in log-star depth

and size O(n log n).

Proof. Apply the reduction used in Lemma 18 in total (log∗ n)-times, until the input size is at
most 2. Compute and save the outcome, and clean ancillas by uncomputation. The circuit size
is O(n log n). ✷
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6 Circuits of small size

In this section, we decrease the size of some circuits. We allow the use of arbitrary one-qubit
gates instead of a fixed basis.

6.1 Constant depth approximation of Or

In this section, we apply the reduction from Lemma 18 repeatedly to shrink the circuit for Or.
We first reduce the size of the circuit to O(n log n). We then develop a recurrent method that
reduces the size even further. Let us define a useful notation.

Definition 7 Let x = x1x2 . . . xn. By Or-reduction n → m with error ε we mean a quantum
circuit mapping |x〉|0m〉 → |x〉|ϕ〉 such that, if |x| = 0, then |ϕ〉 = |0m〉 and, if |x| 6= 0, then
〈0m|ϕ〉 ≤ ε.

The Or-reduction preserves the logical Or of qubits, i.e. |x| = 0 iff |ϕ| = 0 with high
probability. Theorem 4 provides an Or-reduction n→ 1 with error 1

n , constant depth, and size
n2 log n. Lemma 18 provides an Or-reduction n → log n with error 0, constant depth, and size
n log n.

Lemma 21 There is an Or-reduction n→ 1 with error 1
n , constant depth, and size n log n.

Proof. Divide the input into
√
n

logn blocks of size
√
n log n. First, reduce each block by Lemma 18

to 1
2 log n+log log n = O(log n) qubits in constant depth and size

√
n log2 n. In total, we obtain√

n new qubits in size n log n. Second, compute the logical Or by Theorem 4 in constant depth,
size

√
n
2
log

√
n = O(n log n), and error 1√

n
. To amplify the error to 1

n , repeat the computation

twice and return 1 if any of them returns 1 (the error is one-sided). The circuit size is doubled.
✷

The circuit size can be reduced to O(n log(d) n) for any constant number d of iterations of
the logarithm. The trick is to divide input qubits into small blocks and perform the reduction
step on each of them. The number of variables is reduced by a small factor and we can thus
afford to apply a circuit of a slightly bigger size. It we repeat this reduction step d times, we
obtain the desired circuit.

Theorem 22 There exist constants c1, c2 such that for every d ∈ N, there is an Or-reduction
n→ 1 with error 1

n , depth c1d, and size c2dn log
(d) n.

Proof. By induction on d: we have already verified the case d = 1 in Lemma 21. For the
induction step: Divide n input qubits into n/ log(d−1) n blocks of log(d−1) n qubits. Using
Lemma 18, reduce each block to log(d) n qubits in constant depth and size c2 log

(d−1) n · log(d) n.
Total size is c2n log

(d) n. We obtain n
log(d−1) n

log(d) n = o(n) new qubits. Using the induction

hypothesis, compute their logical Or in depth c1(d − 1) and size c2(d − 1)
(

n
log(d−1) n

log(d) n
)

·
log(d−1) o(n) ≤ c2(d− 1)n log(d) n. Together, it takes depth c1d and size c2dn log

(d) n.
The only approximate step is the final application of Lemma 21 for d = 1. It is applied on

n
logn log(d) n variables, hence the error is O(log n/n). It can be amplified to 1

n by running the
computation twice. ✷
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6.2 Log-star depth computation of Or

Our best constant-depth circuit for Or is described by Theorem 22. It is approximate and it has
slightly super-linear size. In this section, we show that we can achieve an exact circuit of linear
size if we relax the restriction of constant depth. We consider d in Theorem 22 a slowly growing
function of n instead of a constant. Now we can use an Or-reduction better than Lemma 21.
Theorem 20 provides an Or-reduction n→ 1 with error 0, log-star depth, and size n log n.

Lemma 23 There exist constants c1, c2 such that for every d ∈ N, there is an Or-reduction
n→ 1 with error 0, depth c1d+ log∗ n, and size c2dn log

(d) n.

Proof. The same as of Theorem 22, but use the Or-reduction from Theorem 20 instead of
Lemma 21 in the last layer (for d = 1). The size stays roughly the same, the circuit becomes
exact, and the depth is increased by an additional term of log∗ n. ✷

Theorem 24 There is an Or-reduction n→ 1 with error 0, log-star depth, and linear size.

Proof. Divide the input into n
log∗ n blocks of size log∗ n. Compute the logical Or of each

block by a balanced binary tree of depth log(log∗ n) < log∗ n and in linear size. Using
Lemma 23 with d = log∗ n, compute the logical Or of n

log∗ n new qubits in log-star depth

and size O
(

log∗ n · n
log∗ n · log(log∗ n) n

)

= O(n). ✷

6.3 Approximation of counting and threshold[t]

In this section, we use the QFT for the parallelisation of increments. This allows us to approx-
imate the Hamming weight of the input in smaller size O(n log n).

Definition 8 The increment gate maps Incrn : |x〉 → |(x+ 1)mod 2n〉.

Lemma 25 The increment gate is diagonal in the Fourier basis and its diagonal form is in
QNC0.

Proof. Let ω = e2πi/2
n
and let |x〉 be any computational basis state. It is simple to prove the

following two equations:

1. Incrn = F †
2nDnF2n for diagonal Dn =

∑2n−1
y=0 ωy|y〉〈y|.

F †DF |x〉 = F †D

∑2n−1
y=0 ωxy|y〉
√
2n

= F †
∑2n−1

y=0 ω(x+1)y|y〉
√
2n

= |(x+ 1)mod 2n〉.

2. D = Rz (π)⊗Rz (π/2)⊗ . . . ⊗Rz

(

π/2n−1
)

.

D|x〉 = ωx|x〉 =
n

⊗

k=1

ω2n−kxn−k |xn−k〉 =
n

⊗

k=1

(e2πi/2
k
)xn−k |xn−k〉 =

=

n
⊗

k=1

Rz

(

2π/2k
)

|xn−k〉 =
(

Rz (π)⊗ . . .⊗Rz

(

π/2n−1
))

|x〉.

We conclude that Incr = F †DF , and that D is a tensor product of one-qubit operators. ✷
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Remark. The addition of a fixed integer b is as hard as the increment. By Lemma 25, Incrb =
F †DbF and (Rz (ϕ))

b = Rz (ϕb), hence the diagonal version of the addition of b is also in QNC0.

Theorem 26 Counting can be approximated in constant depth and size O(n log n).

Proof. Compute the Hamming weight of the input. Each input qubit controls one increment
on an m-qubit counter initialised to 0, where m = ⌈log(n + 1)⌉. The increments Incrm are
parallelised (Theorem 2 and Lemma 25), so we apply the quantum Fourier transform F2m

twice (Theorem 9) and the n constant-depth controlled Dm gates in parallel. The size is
O(poly(m) + nm) = O(n log n). ✷

Remark. threshold[t] is equal to the most significant qubit of the counter if we align it to a
power of 2 by adding a fixed integer 2m− t. exact[t] can be computed by comparing the counter
with t.

7 Concluding remarks

7.1 Comparison with randomised circuits

Let us compare our results for quantum circuits with similar results for classical randomised
circuits. We consider randomised circuits with bounded fan-in of Or and And gates, and
unbounded fan-out and parity (similar to the quantum model). Classical lower bounds are
folklore and we attach the proofs for the convenience of the reader in Appendix A.

Gate Randomised Quantum

Or and threshold[t] exactly Θ(log n) O(log∗ n)
mod[q] exactly Θ(log n) Θ(1)
Or with error 1

n Θ(log log n) Θ(1)
threshold[t] with error 1

n Ω(log log n) Θ(1)

7.2 Relations of quantum circuit classes

We have shown that B-QNC0
f = B-QAC0

f = B-QACC0 = B-QTC0
f (Theorem 6). If we allow

arbitrary one-qubit gates, then also QTC0
f = QAC0

f ⊆ QNCf(log
∗ n) (Theorems 19 and 20).

Several open problems of [GHMP02] have thus been solved. Only little is known about classes
that do not include the fan-out gate. For example, we do not know whether TC0 ⊆ QTC0, we
only know that TC0 ⊆ QTC0

f . It is simple to prove that parity is in TC0. Take the logical Or
of exact[1], exact[3], exact[5], . . . , and compute exact[k] from threshold[k] and threshold[k+1].
However, this method needs fan-out to copy the input bits and hence it is not in QTC0.

Fang et al. proved [FFG+03] a lower bound for fan-out. In particular, they showed that
logarithmic depth is needed to approximate parity using only a constant number of ancillas.
Unfortunately, their method breaks down with more than a linear number of ancillas and it
cannot be extended to other unbounded fan-in gates such as majority or threshold[t].

7.3 Upper bounds for B-QNC0
f

Shor’s original factoring algorithm [Sho94] uses modular exponentiation and the quantum
Fourier transform modulo 2n followed by a polynomial-time deterministic algorithm. The mod-
ular exponentiation ax can be replaced by multiplication of some subset of numbers a, a2, a4,
. . . , a2

n−1
[CW00]. The n numbers a2

k
can be quickly precomputed classically.
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Since both multiplication of n numbers (Theorem 7) and the QFT (Theorem 9) are in
B-QNC0

f , there is a polynomial-time bounded-error classical algorithm with oracle B-QNC0
f

factoring numbers, i.e. factoring ∈ RP[B-QNC0
f ]. If B-QNC0

f ⊆ BPP,3 then factoring ∈
RP[BPP] ⊆ BPP[BPP] = BPP. Discrete logarithms can be computed in a similar way using
modular exponentiation and the quantum Fourier transform modulo general q [Sho94]. Since
QFTq ∈ B-QNC0

f (Theorem 13), we conclude that also discrete-log ∈ RP[B-QNC0
f ].

7.4 Open problems

We propose the following open problems on computational aspects of multi-qubit gates:

i. Is there a constant-depth exact circuit for Or?

ii. Is there a constant-depth linear-size circuit for Or?

iii. Are there exact circuits with a fixed basis?

iv. Can we simulate unbounded fan-out in constant depth using unbounded fan-in gates, e.g.
threshold[t] or exact[t]?
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A Lower bounds on classical circuits

Using the polynomial method [Bei93], we prove several lower bounds on the depths of determin-
istic circuits. We consider circuits with fan-in of Or and And gates at most 2, and unbounded
fan-out and parity, the same as in the quantum model.

Basically, the value of each bit computed by a circuit can be computed by a multi-linear
polynomial (over the field Z2) in the input bits. We are interested in the degree of such a
polynomial; by proving a lower bound on the degree, we also lower-bound the depth of the
circuit. It is simple to prove that the polynomial computing a Boolean function is unique.

Each input bit xk ∈ {0, 1} is computed by the polynomial xk of degree 1. The Not gate
computes the polynomial 1 − p(x), where p(x) is the polynomial computing its argument, and
the degree is unchanged. The And gate computes the polynomial p1(x) · p2(x) and the two
degrees are summed. The parity gate computes the polynomial (p1(x) + . . . + pk(x))mod 2 of
degree equal to the maximum degree among the arguments.

Lemma 27 The output of a circuit of depth d has degree at most 2d.

Proof. By induction: by adding a new layer, we can at most double the degree when using the
And gate. ✷

And of n bits is computed by a (unique) polynomial x1x2 . . . xn of degree n. Hence every
circuit computing And has depth at least log n. It is simple to prove by contradiction that
also Or, threshold[t], and exact[t] have full degree n. Smolensky has proved a much stronger
result [Smo87], which implies that also the degree of mod[q] for q > 2 is n.

Randomised circuits have access to random bits and may produce the result with a small
error. Some functions are computed in smaller depth in this model.

Lemma 28 Or can be computed with one-sided error 1
2 by a randomised circuit of depth 2. The

error can be decreased to 1
n in additional depth log log n.

Proof. Take n random bits and output the parity x1r1 ⊕x2r2⊕ · · · ⊕xnrn. If |x| = 0, then the
circuit always outputs 0. If |x| > 0, then the probability that the parity is odd is equal to 1

2 .
If we perform the computation (log n)-times using independent random bits, we decrease the
probability of error to (12 )

logn = 1
n . This can be done in additional depth log log n by a balanced

binary tree of Or gates. ✷

By Yao’s principle [Yao77], if we have a randomised circuit with error less than 2−n, then
there exists an assignment of random bits such that the result is always correct. That is there
exists a deterministic circuit of the same shape. Hence also randomised circuits computing the
logical Or with exponentially small error have depth at least log n.

Lemma 29 Every circuit computing Or with error 1
n has depth at least log log n.

Proof. Assume the converse: there exists a circuit of depth d < log log n with error 1
n . By

computing the logical Or independently n
logn -times, we can reduce the error to ( 1n)

n
log n = 2−n.

This can be done in additional depth log n
logn = log n− log log n. The total depth of this circuit

is log n− log log n+ d < log n. However, by Yao’s principle, the depth has to be at least log n.
✷

20


	Introduction
	Quantum circuits with unbounded fan-out
	Definition of quantum gates
	Quantum circuit classes

	Parallelisation method
	General method
	Rotation by Hamming weight and value

	Constant-depth approximate circuits
	Or gate
	Exact[t] and threshold[t] gates
	Arithmetic operations
	Quantum Fourier transform
	QFT with a power-of-2 modulus
	QFT with an arbitrary modulus

	Quantum phase estimation

	Exact circuits of small depth
	Circuits of small size
	Constant depth approximation of Or
	Log-star depth computation of Or
	Approximation of counting and threshold[t]

	Concluding remarks
	Comparison with randomised circuits
	Relations of quantum circuit classes
	Upper bounds for B- QNCf0
	Open problems

	Lower bounds on classical circuits

