Abstract
We investigate the problem of colouring random graphs G ε G(n, p) in polynomial expected time. For the case p < 1.01/n, we present an algorithm that finds an optimal colouring in linear expected time. For suficiently large values of p, we give algorithms which approximate the chromatic number within a factor of O(√np). As a byproduct, we obtain an O(√np/ ln(np))-approximation algorithm for the independence number which runs in polynomial expected time provided p 》 ln6 n/n.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achlioptas, D., Molloy, M.: The analysis of a list-coloring algorithm on a random graph, Proc. 38th. IEEE Symp. Found. of Comp. Sci. (1997) 204–212
Beck, L.L., Matula, D.W.: Smallest-last ordering and clustering and graph coloring algorithms, J. ACM 30 (1983) 417–427
Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446n): a no-MIS algorithm, Proc. 36th. IEEE Symp. Found. of Comp. Sci. (1995) 444–453
Bollobás, B.: Random graphs, 2nd edition, Cambridge University Press 2001
Coja-Oghlan, A.: Finding sparse induced subgraphs of semirandom graphs. Proc. 6th. Int. Workshop Randomization and Approximation Techniques in Comp. Sci. (2002) 139–148
Coja-Oghlan, A.: Finding large independent sets in expected polynomial time. To appear in Proc. STACS 2003
Dyer, M., Frieze, A.: The solution of some NP-hard problems in polynomial expected time, J. Algorithms 10 (1989) 451–489
Eppstein, D.: Small maximal independent sets and faster exact graph coloring. To appear in J. Graph Algorithms and Applications
Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Proc. 11. IEEE Conf. Comput. Complexity (1996) 278–287
Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and System Sci. 63 (2001) 639–671
Füredi, Z., Komloś, J.: The eigenvalues of random symmetric matrices, Combinatorica 1 (1981) 233–241
Fürer, M., Subramanian, C.R., Veni Madhavan, C.E.: Coloring random graphs in polynomial expected time. Algorithms and Comput. (Hong Kong 1993), Springer LNCS 762, 31–37
Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures and Algorithms 10 (1997) 5–42
Grimmett, G., McDiarmid, C.: On colouring random graphs. Math. Proc. Cam. Phil. Soc 77 (1975) 313–324
Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer 1988
Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley 2000
Juhász, F.: The asymptotic behaviour of Lovász. function for random graphs, Combinatorica 2 (1982) 269–280
Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. Proc. of the 35th. IEEE Symp. on Foundations of Computer Science (1994) 2–13
Karp, R.: Reducibility among combinatorial problems. In: Complexity of computer computations. Plenum Press (1972) 85–103.
Karp, R.: The probabilistic analysis of combinatorial optimization algorithms. Proc. Int. Congress of Mathematicians (1984) 1601–1609.
Knuth, D.: The sandwich theorem, Electron. J. Combin. 1 (1994)
Krivelevich, M., Vu, V.H.: Approximating the independence number and the chromatic number in expected polynomial time. J. of Combinatorial Optimization 6 (2002) 143–155
Krivelevich, M.: Deciding k-colorability in expected polynomial time, Information Processing Letters 81 (2002) 1–6
Krivelevich, M.: Coloring random graphs-an algorithmic perspective, Proc. 2nd Coll. on Mathematics and Computer Science, B. Chauvin et al. Eds., Birkhauser, Basel (2002) 175–195.
Krivelevich, M., Sudakov, B.: Coloring random graphs. Informat. Proc. Letters 67 (1998) 71–74
Kuĉera, L.: The greedy coloring is a bad probabilistic algorithm. J. Algorithms 12 (1991) 674–684
Lawler, E.L.: A note on the complexity of the chromatic number problem, Information Processing Letters 5 (1976) 66–67
Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core in a random graph. JCTB 67 (1996) 111–151
Prömel, H.J., Steger, A.: Coloring clique-free graphs in polynomial expected time, Random Str. Alg. 3 (1992) 275–302
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coja-Oghlan, A., Taraz, A. (2003). Colouring Random Graphs in Expected Polynomial Time. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_43
Download citation
DOI: https://doi.org/10.1007/3-540-36494-3_43
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00623-7
Online ISBN: 978-3-540-36494-8
eBook Packages: Springer Book Archive