Abstract
We consider instances of the maximum independent set problem that are constructed according to the following semirandom model. First, let G n,p be a random graph, and let S be a set consisting of k vertices, chosen uniformly at random. Then, let G 0 be the graph obtained by deleting all edges connecting two vertices in S. Adding to G 0 further edges that do not connect two vertices in S, an adversary completes the instance G = G. n,p,k . We propose an algorithm that in the case k ≥C(n/p) 1/2 on input G within polynomial expected time finds an independent set of size ≥ k.
Research supported by the Deutsche Forschungsgemeinschaft (grant DFG FOR 413/1-1)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Kahale, N.: Approximating the independence number via the φ-function. Math. Programming 80 (1998) 253–264.
Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. Random Structures & Algorithms 13 (1998) 457–466
Alon, N., Krivelevich, M., Vu, V.H.: On the concentration of the eigenvalues of random symmetric matrices. to appear in Israel J. of Math.
Blum, A., Spencer, J.: Coloring random and semirandom k-colorable graphs. J. of Algorithms 19(2) (1995) 203–234
Bollobás, B.: Random graphs, 2nd edition. Cambridge University Press (2001)
Coja-Oghlan, A.: Finding sparse induced subgraphs of semirandom graphs. Proc. 6. Int. Workshop RANDOM (2002) 139–148
Coja-Oghlan, A.: Coloring k-colorable semirandom graphs in polynomial expected time via semidefinite programming, Proc. 27th Int. Symp. on Math. Found. of Comp. Sci. (2002) 201–211
Coja-Oghlan, A., Taraz, A.: Colouring random graphs in expected polynomial time. To appear in STACS 2003.
Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and System Sci. 63 (2001) 639–671
Feige, U., Krauthgamer, J.: Finding and certifying a large hidden clique in a semirandom graph. Random Structures & Algorithms 16 (2000) 195–208
Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures & Algorithms 10 (1997) 5–42
Füredi, Z., Komloś, J.: The eigenvalues of random symmetric matrices, Combinatorica 1 (1981) 233–241
Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer (1988) ai]14._Håstad, J.: Clique is hard to approximate within n 1-∈. Proc. 37th Annual Symp. on Foundations of Computer Science (1996) 627–636
Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley (2000)
Jerrum, M.: Large cliques elude the metropolis process. Random Structures & Algorithms 3 (1992) 347–359
Juhász, F.: The asymptotic behaviour of Lovász. function for random graphs. Combinatorica 2 (1982) 269–280
Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semide finite programming. J. Assoc. Comput. Mach. 45 (1998) 246–265
Karp, R.: Reducibility among combinatorial problems. Miller, R.E., Thatcher, J.W. (eds.): Complexity of Computer Computations. Plenum Press (1972) 85–103
Karp, R.: Probabilistic analysis of some combinatorial search problems. Traub, J.F. (ed.): Algorithms and complexity: New Directions and Recent Results. Academic Press (1976) 1–19
Knuth, D.: The sandwich theorem, Electron. J. Combin. 1 (1994)
Kuĉera, L.: Expected complexity of graph partitioning problems. Discrete Applied Math. 57 (1995) 193–212
Krivelevich, M., Vu, V.H.: Approximating the independence number and the chromaticnumber in expected polynomial time. J. of Combinatorial Optimization 6 (2002) 143–155
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coja-Oghlan, A. (2003). Finding Large Independent Sets in Polynomial Expected Time. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_45
Download citation
DOI: https://doi.org/10.1007/3-540-36494-3_45
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00623-7
Online ISBN: 978-3-540-36494-8
eBook Packages: Springer Book Archive