Abstract
In Crypto’95, Micali and Sidney proposed a method for shared generation of a pseudo-random function f(·) among n players in such a way that for all the inputs x, any u players can compute f(x) while t or fewer players fail to do so, where 0 ≤ t < u ≤ n. The idea behind the Micali-Sidney scheme is to generate and distribute secret seeds S = s1, . . . , sd of a poly-random collection of functions, among the n players, each player gets a subset of S, in such a way that any u players together hold all the secret seeds in S while any t or fewer players will lack at least one element from S. The pseudo-random function is then computed as

where f s i (·)’s are poly-random functions. One question raised by Micali and Sidney is how to distribute the secret seeds satisfying the above condition such that the number of seeds, d, is as small as possible. In this paper, we continue the work of Micali and Sidney. We first provide a general framework for shared generation of pseudo-random function using cumulative maps. We demonstrate that the Micali-Sidney scheme is a special case of this general construction.We then derive an upper and a lower bound for d. Finally we give a simple, yet efficient, approximation greedy algorithm for generating the secret seeds S in which d is close to the optimum by a factor of at most u ln 2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
J. Benaloh and J. Leichter. Generalised secret sharing and monotone functions. Adv. in Cryptology-CRYPTO’ 88, LNCS, 403(1988), 27–35. 283
G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Computer Conference, 48(1979), 313–317. 283
G. R. Blakley and C. Meadows. Security of ramp schemes. Advances in Cryptology-Proceedings of CRYPTO’ 84, Lecture Notes in Comput. Sci., 196(1985), 242–268. 283
C. Blundo, A. Cresti, A. De Santis and U. Vaccaro. Fully dynamic secret sharing schemes. Advances in Cryptology-CRYPTO’ 93, Lecture Notes in Comput. Sci., 773(1993), 110–125.
E. Brickell, G. Di Crescenzo and Y. Frankel. Sharing Block Ciphers. Information Security and Privacy, Lecture Notes in Computer Science, 1841(2000) 457–470. 281, 282
T. Cormen, C Leiserson and R. Rivest, Introduction to Algorithms, The MIT Press, 1989. 289, 290
A. De Santis, Y. Desmedt, Y. Frankel and M. Yung. How to Share a Function Securely. Proceedings of ACM Symp. Theory of Computing (STOC)’ 94 (1994) 522–533. 281
Y. Desmedt, Y. Frankel. Threshold Cryptosystems. Advances in Cryptology-CRYPTO’ 89, Lecture Notes in Computer Science, 435(1989), 307–315. 281
Y. Desmedt and K. Kurosawa. How to Break a Practical MIX and Design a New One. Eurocrypt’00, Lecture Notes in Computer Science, 2000, 556–572. 287
P.-A. Fouque, G. Poupard and J. Stern. Sharing Decryption in the Context of Voting or Lotteries. Financial Cryptography 2000, Lecture Notes in Computer Science, 1962 (2001) 90–104. 281
Y. Frankel, P. Gemmell and M. Yung, Witness-based Cryptographic Program Checking and Robust Function Sharing. Proc. 28th STOC, 499–508, ACM, 1996.
Y. Frankel, P. MacKenzie and M. Yung. Robust efficient distributed RSA-key generation. Proc. 30th STOC, 663–672, ACM, 1998. 281
R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust Threshold DSS Signatures. Advances in Cryptology: Eurocrypt’ 96, Lecture Notes in Computer Science, 1070 (1996) 354–371. 281
R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust and efficient sharing of RSA functions, J. of Cryptology, 13(2) (2000) 273–300. 281
O. Goldreich, S. Goldwasser and S. Micali. How to construct random functions. Journal of the Association for Computing Machinery, 33(4) (1986), 792–804.
R. Impaliazzo, L. Levin and M. Luby. Pseudo-random generation from one-way functions. Proceedings of the 21th Annual ACM Symposium on Theory of Computing, 1989, 12–24. 285
M. Ito, A. Saito and T. Nishizeki. Secret Sharing Scheme Realizing General Access Structure. J. Cryptology, 6 (1993) 15–20. 282, 283, 284
W.-A. Jackson and K. M. Martin. Cumulative Arrays and Geometric Secret Sharing Schemes, Advances in Cryptology: Auscrypt’ 92, Lecture Notes in Computer Science, 718 (1993) 48–55. 282, 283, 284, 286, 290
W.-A. Jackson and K. M. Martin. Geometric secret sharing schemes and their duals. Des. Codes Cryptogr., 4(1994), 83–95. 283
W.-A. Jackson and K. M. Martin. A combinatorial interpretation of ramp schemes. Australasian Journal of Combinatorics, 14(1996), 51–60. 283
K. Kurosawa, K. Okada, K. Sakano, W. Ogata and S. Tsujii. Non-perfect secret sharing schemes and matroids. Advances in Cryptology: Eurocrypt’ 93, Lecture Notes in Computer Science, 765 (1993) 126–141. 283
L. Levin. One-way functions and pseudorandom generators. Proceedings of the 17th Annual ACM Symposium on Theory of Computing, 1985, 363–365. 285
K. Martin, R. Safavi-Naini, H. Wang and P. Wild. Distributing the Encryption and Decryption of a Block Cipher. Preprint, 2002. 293
K. Martin, J. Pieprzyk, R. Safavi-Naini, H. Wang and P. Wild. Threshold MACs. ICISC02, the 5th international conference on information security and Cryptology, Lecture Notes in Computer Science, 2002, to appear. 293
S. Micali and R. Sidney. A Simple Method for Generating and Sharing Pseudo-Random Functions, with Applications to Clipper-like Escrow Systems. Advances in Cryptology: CRYPTO’ 95, Lecture Notes in Computer Science, 963(1995), 185–195. 282, 284, 285, 286, 287, 288, 289
D. Mount. Design and Analysis of Computer Algorithms. Lecture Notes of the University of Maryland, College Park, 1999. 290
M. Naor, N. Pinks and O. Reingold, Distributied Pseudo-random Functions and KDCs. Eurocrypt’99. 282, 286, 287, 290
W. Ogata and K. Kurosawa, Some basic properties of general nonperfect secret sharing schemes, Journal of Universal Computer Science, 4(8), 1998, 690–704. 283
T. Rabin, A simplified Approach to Threshold and Proactive RSA, In Crypto’ 98, pages 89–104, 1998. Springer-Verlag, LNCS 1109. 281
A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979. 283
G. J. Simmons, W.-A. Jackson and K. Martin. The Geometry of Shared Secret Schemes, Bulletin of the ICA, 1 (1991), 71–88. 283
V. Shoup, Practical Threshold Signature, Advances in Cryptology-Eurocrypt’99, LNCS, 1807(2000), 207–222.
D. R. Stinson. An explication of secret sharing schemes. Des. Codes Cryptogr., 2:357–390, 1992. 283
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, H., Pieprzyk, J. (2003). Shared Generation of Pseudo-Random Functions with Cumulative Maps. In: Joye, M. (eds) Topics in Cryptology — CT-RSA 2003. CT-RSA 2003. Lecture Notes in Computer Science, vol 2612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36563-X_19
Download citation
DOI: https://doi.org/10.1007/3-540-36563-X_19
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00847-7
Online ISBN: 978-3-540-36563-1
eBook Packages: Springer Book Archive