Skip to main content

SLEPc: Scalable Library for Eigenvalue Problem Computations

  • Conference paper
  • First Online:
High Performance Computing for Computational Science — VECPAR 2002 (VECPAR 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2565))

Abstract

The eigenvalue problem is one of the most important problems in numerical linear algebra. Several public domain software libraries are available for solving it. In this work, a new petsc-based package is presented, which is intended to be an easy-to-use yet efficient object-oriented parallel framework for the solution of standard and generalised eigenproblems, either in real or complex arithmetic. The main objective is to allow the solution of real world problems in a straightforward way, especially in the case of large software projects. Topics. Numerical methods, parallel and distributed computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix collection for non-Hermitian eigenvalue problems. Technical report CS-97-355, University of Tennessee, Knoxville, March 1997. LAPACK Working Note 123. 387

    Google Scholar 

  2. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000. 378

    Google Scholar 

  3. Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc home page. See http://www.mcs.anl.gov/petsc. 381

  4. Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc Users Manual. Technical Report ANL-95/11-Revision 2.1.1, Argonne National Laboratory, 2001. 381

    Google Scholar 

  5. Gene H. Golub and Henk A. Van der Vorst. Eigenvalue computation in the 20th century. Journal of Computational and Applied Mathematics, 123(1–2):35–65, November 2000. 378

    Article  MATH  MathSciNet  Google Scholar 

  6. Vicente Hernández, José E. Román, Antonio M. Vidal, and Vicent Vidal. Calculation of Lambda Modes of a Nuclear Reactor: a Parallel Implementation Using the Implicitly Restarted Arnoldi Method. Lecture Notes in Computer Science, 1573:43–57, 1999. 387

    Google Scholar 

  7. M. Heroux et al. Trilinos Project home page. See http://www.cs.sandia.gov/ ?mheroux/Trilinos. 390

  8. R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users' Guide, Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. 379

    Google Scholar 

  9. O.A. Marques. BLZPACK: Description and user’s guide. Technical Report TR/PA/95/30, CERFACS, Toulouse, France, 1995. 380

    Google Scholar 

  10. O.A. Marques and L.A. Drummond. Advanced Computational Testing and Simulation (ACTS) Toolkit home page. See http://acts.nersc.gov. 377

  11. K. J. Maschho. and D.C. Sorensen. PARPACK: An Efficient Portable Large Scale Eigenvalue Package for Distributed Memory Parallel Architectures. Lecture Notes in Computer Science, 1184:478–486, 1996. 379

    Google Scholar 

  12. K. Wu and H.D. Simon. Thick-restart Lanczos method for symmetric eigenvalue problems. Lecture Notes in Computer Science, 1457:43–55, 1998. 380

    Google Scholar 

  13. Kesheng Wu and Horst Simon. A parallel Lanczos method for symmetric generalized eigenvalue problems. Technical Report LBNL-41284, Lawrence Berkeley National Laboratory, 1997. 380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernández, V., Román, J.E., Vidal, V. (2003). SLEPc: Scalable Library for Eigenvalue Problem Computations. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández, V. (eds) High Performance Computing for Computational Science — VECPAR 2002. VECPAR 2002. Lecture Notes in Computer Science, vol 2565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36569-9_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-36569-9_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00852-1

  • Online ISBN: 978-3-540-36569-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics