Rapid Parameterized Model Checking of Snoopy Cache
Coherence Protocols*

E. Allen Emerson and Vineet Kahlon

Department of Computer Sciences and Computer Engineering Research Center
The University of Texas, Austin TX78712, USA
{emerson,kahlon}@cs.utexas.edu

Abstract. A new method is proposed for parameterized reasoning about snoopy
cache coherence protocols. The method is distinctive for being exact (sound and
complete), fully automatic (algorithmic), and tractably efficient. The states of
most cache coherence protocols can be organized into a hierarchy reflecting how
tightly a memory block in a given cache state is bound to the processor. A broad
framework encompassing snoopy cache coherence protocols is proposed where
the hierarchy implicit in the design of protocols is captured as a pre-order. This
yields a new solution technique that hinges on the construction of an abstract
history graph where a global concrete state is represented by an abstract state
reflecting the occupied local states. The abstract graph also takes into account the
history of local transitions of the protocol that were fired along the computation
to get to the global state. This permits the abstract history graph to exactly capture
the behaviour of systems with an arbitrary number of homogeneous processes.
Although the worst case size of the abstract history graph can be exponential
in the size of the transition diagram describing the protocol, the actual size of
the abstract history graph is small for standard cache protocols. The method is
applicable to all 8 of the most common snoopy cache protocols described in
Handy’s book [19] from Illinois-MESI to Dragon. The experimental results for
parameterized verification of each of those 8 protocols document the efficiency of
this new method in practice, with each protocol being verified in just a fraction of
a second. It is emphasized that this is parameterized verification.

1 Introduction

Cache protocols provide a vital buffer between the ever growing performance of pro-
cessors and lagging memory speeds making them indispensable for applications such as
shared memory multi-processors. Unfortunately, cache protocols are behaviorally com-
plex. Ensuring their correct operation, in particular that they maintain the fundamental
safety property of coherence so that different processes agree on their view of shared
data items, can be subtle. The difficulty of the problem is often magnified as the number
n of coordinating caches increases. Moreover, it is highly desirable that a cache protocol
be correct independent of the magnitude of n. There is thus great practical as well as
theoretical interest in uniform parameterized reasoning about systems comprised of n

* This work was supported in part by NSF grants CCR-009-8141 & CCR-020-5483, and SRC
contract 2002-TJ-1026.

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 144-139] 2003.
(© Springer-Verlag Berlin Heidelberg 2003

Rapid Parameterized Model Checking of Snoopy Cache Coherence Protocols 145

homogeneous cache protocols so as to ensure correctness for systems of all sizes n.
This general problem is known in the literature as the Parameterized Model Checking
Problem (PMCP). It is in general algorithmically undecidable. Prior attempts to address
the PMCP for cache protocols (cf. Section 5) have had a number of limitations, ranging
from incompleteness to the need for considerable human intervention and ingenuity to
potentially catastrophic inefficiency.

In this paper, we present a general method for solving the PMCP over snoopy cache
coherence protocols of the sort commonly used in shared memory multiprocessors.
Our framework includes all of the protocols in the book of Handy [[19]. Our method
is specialized to dealing with safety properties, as is appropriate for reasoning about
coherence. We give a solution for this PMCP over our cache framework for safety that is
distinguished by being exact (sound and complete), fully automatic (algorithmic), and
having complexity bounds that are quite tractable. The worst case complexity of our
general algorithm is single exponential time in the size of the state diagram of a single
cache unit; however, our experimental results show that our algorithm performs very
efficiently in practice. We have applied our method to verify parameterized versions
of the MSI, MESI, MOESI, Illinois (MESI-type), Berkeley, N+1, Dragon, and Firefly
cache coherence protocols.

In our framework, we model cache coherence protocols using a specialized variant of
broadcast protocols [14] that we call pre-ordered broadcast protocols, where processes
coordinate using broadcast primitives plus boolean guards. A broadcast transmission
corresponds to a cache protocol putting a message on the bus; reception of such a
message corresponds to snooping the bus and taking appropriate action. Boolean guards
make it possible to model protocols (e.g., [llinois, Firefly, Dragon) that need to determine
the presence or absence of the required memory block in other caches. Our approach
exploits a key feature common to most snoopy cache coherence protocols [§]: their states
can be organized into a hierarchy based on how tightly a memory block in a given state
is bound to the processor. Consider, for example, the MSI cache coherence protocol (cf.
Figure 1). A memory block in the modified state is intended to be used by at most one
processor and can be written to by that processor locally without generating any memory
transactions across the bus. So it is tightly bound to the processor. However, a block in
the shared state can potentially be shared by multiple processes and cannot be modified
locally. Hence it is less tightly bound to the processor. We make precise this notion of
tightness by capturing it as a pre—orderE] on the state set of an individual cache protocol.
Intuitively, a state higher in the order is more tightly bound to the processor than a state
that is comparably lower in the order. For instance, in the case of the MSI protocol, the
pre-order, =<, is given by I < .S < M.

Our technique involves the construction of an abstract history graph over nodes of
the form (a, A) € S x 29, where S is the set of states of the given cache protocol.
The key idea is the following: We represent global state s of a system with n caches
by a tuple of the form (a, A) € S x 2. Here a denotes the local state of the process

A pre-order on finite set S is a reflexive and transitive binary relation < on S. There are several
associated relations. We say x is equivalent to y, written = = y, iff t < y A y < z; z strictly
precedes y, written z < y, iff ¢ < y A =(y < x); x is incomparable to y, written = ¢ y, iff
(z 2y) A=y 2).

146 E.A. Emerson and V. Kahlon

\
\

PrWWr/BusRdX Privr??

! .
\ BusRdX=7"

PrRd/—
BusRd/— | 4

PrRd=BusRd

Fig. 1. The MSI Cache Coherence Protocol and its template

executing the most recent transition in the computation leading up to s that flushes all
the other processes into some unique fixed state. The set A denotes the maximal set
of states of .S that could potentially be filled given arbitrarily many processes by firing
(a stuttering of the) the sequence of local transitions that were fired in the system with
n caches to get to s. The standard abstract graph construction used in, e.g., [25] just
stores the set of local states occurring in a global state. Our new construction’s extra
historical information permits us to reason about an arbitrary number of caches in an
exact fashion with respect to safety properties. In the worst case, the size of the abstract
graph may be exponential in the size of the state diagram of the given cache protocol.
But in practice the abstract graph tends to be small as documented by our empirical
results. In our experiments, protocols with k states had abstract graphs with ck abstract
states, for small ¢ < 2. We believe this may be a reflection of the tendency for broadcast
transitions to drive recipients from a wider range of cache states to a narrower (lower in
the pre-order) range of cache states, thereby reducing the number of degrees of freedom
possible for abstract states. Finally, we discuss how our technique enables us to generate
error traces once an error is detected.

The rest of the paper is organized as follows. We begin by introducing the system
model in section 2. In section 3, we present a model checking algorithm for verifying
parameterized safety properties based on the construction of the abstract history graph.
Applications and experimental results are discussed in section 4, while a comparison
with related works and some concluding remarks are given in the final section 5.

2 Preliminaries

2.1 A Motivating Example

We use as an example the simple MSI cache coherence protocol. The state transition
diagram for the MSI protocol is shown in figure 1. The symbols M, S and | stand for

Rapid Parameterized Model Checking of Snoopy Cache Coherence Protocols 147

modi fied, shared and invalid states, respectively. The states are organized so that the
closer the state is to the top, the more tightly is the memory block in that state bound to
the processor. In our system model we capture this notion of tightness as a pre-order,
=, on the states of the cache protocol. The notation A/B means that if the controller
observes the event A from the processor side of the bus then in addition to the state
change it generates the bus transaction or action B. The null action is denoted by “-”.
Transitions due to observed bus transactions are shown as dashed arcs, while those due
to local processor actions are shown in bold arcs. The Bus Read (BusRd) transaction
is generated by a process read (PrRd) request when the memory block is not in the
cache. The newly loaded block is promoted, viz., moved up in the state diagram, from
invalid to the shared state in the requesting cache. If any other cache has the block in the
modified state and it observes a BusRd transaction on the bus, then its copy is stale and
so it demotes its copy to the shared state. We call such a transition a low-push broadcast.
More generally broadcast transition a — b is a low-push transition with respect to < iff
it forces every other process in a local that is strictly higher in the pre-order < than b to
a state that is at most as high as b. The Bus Read Exclusive (BusRdX) transaction is
generated by a PrTWr to a block that is either not in the cache or is in the cache but not
in the modified state. The cache controller puts the address on the bus and asks for an
exclusive copy that it intends to modify. All other caches are invalidated. Once the cache
obtains the exclusive copy, the write can be performed in the cache. This is an example
of a flush broadcast transition, that forces every process other than the one firing the
transition and in its non-initial state into a unique fixed state defined by the transition.

The template U for a protocol, such as MSI, is obtained from its state transition
diagram through a simple abstraction, treating the behavior of the processors as purely
nondeterministic. The transformation is straightforward, syntactic, and mechanical: Each
transition generated by processor actions (represented by a bold line) and labeled by
A/ B, where B # —, is labeled with the broadcast send label A!! while every transition
generated by bus actions (represented by dashed lines) and labeled with B/C' is labeled
with the matching broadcast receive label A?7?. In the original diagram the relationship
between a broadcast send A/ B and its corresponding receive B/C' was established with
the common symbol B, while in the template it is established by the common symbol
A in the labels A!! and A??. Every bold transition labeled with A/— represents a local
action and is therefore labeled with the local transition label 7. The naturaﬂ pre-order
<onUis| < S < M. All transitions labeled with PrRd are low-pushes with respect
to <, while those labeled with PrWr are flushes.

2.2 The System Model: Pre-ordered Broadcast Protocols

In this paper we consider families of systems of the form U™, such that a pre-order, <,
can be imposed on the states of template U such that each transition of U is either a local
transition or a flush broadcast or a low-push broadcast with respect to <. Furthermore
the transition could also be labeled with the specialized disjunctive guard \/ —(i) or the
specialized conjunctive guard A (i). We call such systems pre-ordered broadcasts.

% There is usually a natural and visually obvious pre-order, but there may be more than one
suitable pre-order. A suitable pre-order can be constructed as shown in the section 3.4.

148 E.A. Emerson and V. Kahlon

The process template U is formally defined by the 4-tuple (S, X, R, i), where

— S'is a finite, non-empty set of states.

— X is a finite set of labels including the local transition label 7, broadcast labels {!!
and receive labels [77.

— The local transition relation R is such that each transition #r is either local a 25 b,

g:i! . g:l?7?
or a broadcast, a — b, or a receive a — b.

We assume that receives are deterministic: for each label [!! appearing in some
broadcast send and for each state s in .S, there is a unique corresponding receive transition
on (77 out of s.

The guard g labeling each transition ¢r of R is either the boolean expression true or
the specialized conjunctive guard A (i), or the specialized disjunctive guard \/ —(i). We
assume that the guard is true for receive transitions. In practice, the above mentioned
guards suffice in modeling cache coherence protocols as each cache only needs to know
whether another cache has the memory block it requires, expressed using the specialized
disjunctive guard, or whether no other cache has it, expressed using the specialized
conjunctive guard.

We further stipulate a pre-ordering, =<, on the state set .S of U such that i is the
minimum element, i.e., for all local states a # i, we have a > i, and such that each
broadcast transition ¢r is of either of the two forms

. . ! .
1. Flush: Given state a of U, transition b — ¢ € R, where ¢ # |, is called an a-flush
. ISP i 5
transition provided that there exists the matching receive transition i — iin R and

for each state d # i of U, there is a matching receive transition of the form d "a
in R; a flush transition is an a-flush for some a. Intuitively, an a-flush transition
pushes every process in its non-initial state, other than the one firing the transition,
into local state a.

2. Low-push: Transition a B bisa low-push transition provided that, b # i, =(b < a),
and for each state c such that b < c¢ there is a matching receive transition of the

form ¢ i d such that d =< b; and, for all other states c, there is a matching self-loop

. - 177 .. . no. o
receive transition ¢ — c. Intuitively transition a L2 bis a low-push if it pushes every
process in a local state strictly higher than b in the pre-order =< into a state at most
as high as b while leaving the rest of the processes untouched.

In practice, a natural pre-order < is normally supplied along with the diagram of
U as it drawn in appropriate levels. If not, there is given in the section 3.4 an efficient
algorithm (O(|U|?)) to compute an appropriate pre-order if one exists.

To capture block replacement behavior, we also require that templates be initializ-
ableﬁ. This means that from each state a of a protocol, there is a local transition of the
form a - i. Such initializations model block replacement behavior, where a cache is
non-deterministically pushed into its invalid state, irrespective of the current state of the
block. For simplicity, re-initialization transitions and self-loop receptions are not drawn
in state transition diagrams of cache protocols (cf. [8]).

3 Initializability is not needed for the mathematical results of section 3.1; however, it is needed
for the results of section 3.2.

Rapid Parameterized Model Checking of Snoopy Cache Coherence Protocols 149

Given U, the state transition digram for U™ = (S™, X, R™,i"), the system with n
copies of U, is based on interleaving semantics in the standard way.

A path x = xgx;... of U™ is a sequence of states of S™ starting at the initial state i"
of U™ such that for every ¢ > 0, (z;,a,z;1+1) € R" for some a € X. For global state
sof U™, and i € [1 : n], we use s]i] to denote the local state of process U; in s and for
computation path z of U™, we use z[i] to denote the local computation path of U; in z,
viz., the sequence zg[i]z1[¢].... We write 2.5 € U™ to mean that finite computation path =
of U™ ends in global state s. In this paper we will focus on finite paths and computations
as they suffice for safety. Finally, given global state s of U"”, and local state a of U, we
let num(a, s) denote the number of copies of a in s, viz., the number of processes in
local state a in global state s.

3 Safety Properties

Given a state a of U, we say that a is reachable iff there exists n such that there is a finite
computation of U" leading to a state with a process in local state a. For cache coherence
protocols, we are typically interested in pairwise reachability, viz., given a pair (a, b) of
local states a and b of template U, deciding whether for some n, there exists a reachable
global state of U™, with a process in each of the local states a and b. For instance, in the
case of the MSI protocol, we are interested in showing that none of the pairs in the set
{(M, M), (M, S)} is pairwise reachable.

3.1 Systems without Conjunctive Guards

In this section, we assume that U is a template without conjunctive guards; guards of the
form true or \/ — (i) are permitted. This allows us to handle the MSI, MOESI, MESI (not
the Illinois version which is handled in the next section), Berkeley and N+1 protocols.

A standard technique for reasoning about parameterized systems involves the con-
struction of an abstract graph to capture the behaviour of a system instance of arbitrary
size. Classically, the abstract graph is defined to be a transition diagram over the set 2°
with a given concrete global state s of a system instance U™ being mapped via mapping
, say, onto the set A = {a;|num(a;,s) > 1}.For B,C € 29, a transition is introduced
from B to C' in the abstract graph iff there exists m and concrete states ¢ and u of U™
such that ¢(t) = B, ¢(u) = C and u results from ¢ by firing a concrete transition of U™.
There is a loss of information in the mapping ¢ which is reflected in the fact that it might
not be possible to identify a unique successor B of A in the abstract graph that results by
firing a transition tr = a — b, where a € A. For instance if ¢r is a local transition, then
two different successors are possible: B; = A\ {a}U{b} and By = AU{b} depending,
respectively, on whether there is exactly one or at least 2 copies of a in the concrete state
that maps onto A. To preserve soundness we cover for both cases and introduce both By
and B, as possible successors. However this may generate bogus paths in the abstract
graph, viz., paths for which there do not exist matching concrete computations. Thus
there might exist paths in the abstract graph that don’t “lift” to concrete computations
and hence the above technique though sound is not complete.

150 E.A. Emerson and V. Kahlon

In this paper to check pairwise reachability, we use the abstract history graph of U,
denoted by Ay, where we bypass the above problem by mapping each concrete state s
onto a tuple of the form (a, A), that denotes a formal state with at least one copy of state
a and finite but arbitrarily many copies of each state in A. As we later show this permits
us to reason about safety properties in a sound and complete fashion.

Definition (representative). Given template U = (.S, X, R, i), and a finite computation
x.sof U™, we define rep(z.s) tobe the tuple (a, A) € S x2°, where, if no flush transition
was fired along z, then a = i and A = {s[j]|j € [1 : n]}; and if Uj is the process to last
fire a flush transition along x, then s[i] = a and A = {s[j]|j € [1: n] A j # i}.

Given template U, the abstract history graph, Ay = (Suy, Ru, (i, {i})), is a transi-
tion diagram defined over tuples of the form (a, A) € S x 2°. For z.s € U™, for some
n, we will show how to map z.s onto a tuple of the form (a, A). This mapping depends
not only on the global state s but also on z, viz., the history of the computation leading
to s and thus the term abstract history graph. Essentially in tuple (a, A), state a records
the local state in s of the process executing the last flush along x, whereas A is a superset
of the set of the local states of the remaining processes. This dichotomy is justified on
the basis of the fact that we can pump up the multiplicity of each local state in s to any
desired value except possibly of the current local state in s of the process to last execute
a flush along = which could have multiplicity exactly one as we later show.

We now define the transition relation Rys. Towards that end, given a tuple (a, A) and
a local or a broadcast send transition ¢t = ¢ — d, we define the successor of (a, A) via
tr as either the state-successor, denoted by state-succ((a, A), tr) or the set-successor
of (a, A), denoted by set-succ((a, A), tr). As mentioned above, we think of (a, A) as a
state with finite but arbitrarily many copies of each state in A plus one copy of a. The
case of the state-successor captures the scenario when a process in local state a that
possibly has multiplicity only one fires ¢r while the case of the set-successor captures
the scenario when a process in local state ¢ € A with arbitrarily large multiplicity fires
enabled transition ¢r.

Definition (state-successor). Let (a, A) € S x 29 and let transition tr = a—b € R
labeled by guard g, be enabled in (a, A), viz.,if g = \/ —(i), then Ja’ € A : a’ # i. Then
state-succ((a, A),tr) = (b, B), where if tr is a local transition then B = A and if ¢r is
a broadcast send transition then B = {b'|3a’ € A : 3a'—b" € R that is a matching

receive for tr }.

. . . PrRd!!
As an example, since firing the transition {r = | TR S of the MSI protocol

affects only processes in state M by causing them to transit to state S, therefore state-
suce((1,{1,S}),tr) = (S, {I,S}).

Definition (set-successor). Let (a, A) € S x 29 and let transition tr = b—c € R,
where b € A, be such that if ¢r is labeled by guard g then it is enabled in (a, A), viz., if
g =V —(i), then for some a’ € {a} U A: @’ # i. Then, set-succ((a, A),tr), is defined
as the tuple

- (¢, {c,i}) if tr is a ¢/-flush transition
- (a, AU{c}) if tr is alocal transition. Note that since we had arbitrarily many copies
of b to start with so even after firing local transition ¢r we are guaranteed arbitrarily

Rapid Parameterized Model Checking of Snoopy Cache Coherence Protocols 151

S.{1})

: O

PrRd

PrWr
1}

PrWwr (M, {/\\
PrRd

— (S,{1,S})

03 W
PrRd
Privr
{| S} PrRd

Fig. 2. The abstract history graph for the MSI Cache Coherence Protocol

many processes in local state b which is therefore not excluded from the second
component of the resulting tuple.

- (d, B) if tr is alow-push broadcast transition, where a—d is the (unique) matching
receive for tr from a and B = {c} U{b'|Fa’ € A : Ja’—b" € Rthatis a matching
receive for tr }. As in the previous case since we have arbitrarily many copies of b
so in B we include the local state that results from firing the matching receive for
tr from b which by definition of a low push transition (and the fact that b < b) is b
itself.

As an example, since firing the transition tr = S PrWE M of the MSI protocol

flushes every other process into state |, therefore set-succ((l, {I,S}), tr) = (M, {I}). We
now formally define the abstract history graph of a template U.

Definition (Abstract History Graph). Given template U = (S, X, R, i), the abstract
history graph of U, is defined to be the tuple Ay = (Sy,Ru, (i, {i})), where Sy =
S x 2% and Ry = {((a, A), (b, B))|(b, B) = state-succ((a, A),tr)) or (b, B) = set-

succ((a, A),tr)) for some local or broadcast send transition tr of U'}.

As an example, the abstract history graph for the MSI protocol is shown in figure 3.
Self loops are omitted for the sake of simplicity. For convenience, we have labeled each
transition of the graph by the label of the transition responsible for “firing” it.

Note that as opposed to the classical construction, given a tuple (a, A) and transition
tr both the set-successor and state-successor of (a, A) via tr are uniquely defined. This is
because as will be shown in proposition 3.3, we can have arbitrarily many copies of each
state in A thereby alleviating the problem of considering the different successors that may
arise from concrete states with different counts of local states as was the case with the
classical abstract graph construction. This permits us to give exact path correspondences
between the parameterized family of concrete systems and the abstract history graph
as we now show. Since we are dealing with systems of a “disjunctive” nature having
(arbitrarily many) extra copies does not disable any transitions.

152 E.A. Emerson and V. Kahlon

Given x.s € U", the precise mapping of x.s onto a tuple of Ay is given by the
w-representative of z.s, denoted by w-rep(z.s).

Definition (w-representative). Let v = z...x; be a finite computation path of U™. Then
we define the w-representative of x.x;, denoted by w-rep(z.x;), as the tuple (a, A) €
S x 29, defined as follows: If [= 0, then (a, A) = (i, {i}), else suppose that transition
xj—1 — xy is initiated by transition ¢r of U, fired locally by process U; and let Uy, be
the process to last execute a flush transition in zq...x;—1. Then
{State—succ(w—rep(ajo...ml_l.xl_l), tr) ifj=k
(a, A) = .
set—succ(w—rep(xg...x1—1.21-1),tr) otherwise
The tuple rep(z.s) specifies the actual set of states present in the global state s, having
followed path = through U™. In contrast, the w-representative w-rep(x.s) incorporates
not only the local states present in s but also the states that could potentially be present,
given sufficiently many processes n, in a global state of U™ that results from firing (a
stuttering of) the same local transitions as were fired along x to get to s. Thus, w-rep(z.s)

drags along some “history” of the computation = leading to s, and thereby stores more
information than rep(z.s). This is formalized as follows.

Proposition 3.1 (Containment Property). Given z.s € U™, such that rep(z.s) =
(a, A) and w-rep(x.s) = (b, B), we have a = band A C B.

We now establish a “path correspondence” between finite computations of U™ and be-
tween finite paths of Ay starting at (i, {i}).

Proposition 3.2 (Projection). For any finite path x.s in U", there exists a finite path y.¢
in Ay starting at (i, {i}) such that ¢t = w-rep(z.s).

For the other direction, we have

Proposition 3.3 (Lifting). Let x be a path of Ay starting at (i, {i}) and leading to
tuple (a, A) of Ay. Then, given p > 1, there exists y.t € U™, for some n, such that
rep(y.t) = (a, A) and ¢ has at least p copies of each state in A plus a copy of a.

Combining the previous three results, we have

Theorem 3.4 (Decidability Result). Pair (a,b) € S x S is pairwise reachable iff there
exists a path in Ay starting at (i, {i}) to a tuple of the form (¢, C') where either a = ¢
andbe C;orb=canda € C;ora € Candb € C.

Thus we have reduced the problem of pairwise reachability for a pair of local states
of a given template U to the problem of reachability in A, the abstract history graph
constructed from U. Since the size of the abstract graph is O(|U |2‘U|), we have .

Corollary 3.5. The pairwise reachability problem for a pair of local states of a given
template U can be solved in time O(|U|2!V1), where |U] is the size of template U as
measured by the number of states and transitions in U'.

Rapid Parameterized Model Checking of Snoopy Cache Coherence Protocols 153

Note that in the construction of Ay, it suffices to consider only the set of tuples
reachable from the initial tuple (i, {i})). In practice, the number of states of this graph
may be much smaller than the worst case scenario where it could be |S| x 2!%I. This is
illustrated clearly by our experimental results in section 4.2.

3.2 Adding the Specialized Conjunctive Guard

To reason about systems wherein the templates are augmented with the specialized
conjunctive guard along with the assumption of initializability, we use a modification
of the abstract history graph. Broadly speaking, the intuition behind the modification is
that we can make the specialized conjunctive guard of a process evaluate to true starting
at any global state by driving all the other processes into their respective initial states
by making use of the local initializing transition mentioned above. Thus for every tuple
(a, A) in the abstract history graph, we add a transition of the form (a, A) — (a’, {i})
where either a’ = aora’ € A to Ay.

Definition (Modified Abstract History Graph). Given template U = (S, X, R, i) and
its abstract graph Ay = (Su, Ru, (i, {i})), define the modified abstract graph A7, to
be the tuple (Sy, R, (i, {i}))), where R, is the set of all transitions ((a, A), (b, B)),
where

— B = {i} and either b = a or b € A. This transition corresponds to the successive
firing of the local initializing transition that leaves one process in state b € {a} U A
and the rest of the processes in their initial states, thereby enabling guard A (i)
labeling its transitions.

- A ={i} = Band 3tr = a—b € R labeled by A(i). This corresponds to the firing
of a transition labeled with A (i).

— Jtr € R labeled either by \/ —(i) or by true such that either (b, B) = state-
succ((a, A),tr) or (b, B) = set-succ((a, A),tr)))} This correspond to the firing
of transitions labeled with \/ —(i) or true.

Then, as in section 3.1, we can show a “path correspondence” between concrete finite
computations of U™ and finite paths in A7, starting at (i, {i}). The proofs are similar
and are therefore omitted. Thus as in section 3.1, we have the following decidability
result from which it follows, as before, that for this model of computation, pairwise
reachability can be decided in time O(|U|2!V!), where |U]| is the size of the template U.

Theorem 3.6 (Decidability Result). Pair (a,b) € S x S is pairwise reachable iff there
exists a path in A7 starting at (i, {i}) to a tuple of the form (¢, C') where either a = ¢
andbe C;orb=candae C;orac Candb e C.

3.3 Generating Error Traces

A critical part of the verification process, once an error is detected, is the generation
of a concrete computation of the system at hand leading to an erroneous global state.
Till now, we have shown how to reduce the verification process for safety properties

154 E.A. Emerson and V. Kahlon

AN
MoPrWwnll

1 \

1 \

" PrRd?,

1
Privelt @ | Prvrr? O
\
A
T Privyr?

: ' CX0))
PrRd! |

i
\

’

.~
A 0. (.41 1, 01,5, M})

Fig. 3. The template for the Broken MSI Protocol and its abstract history graph

of the parameterized version of a given cache protocol to reachability analysis over the
corresponding abstract history graph. This only allows us to detect an erroneous state
in the abstract history graph and thereby construct a path in the abstract graph to an
erroneous state. To get back a concrete computation of an instance of an original system
leading to a concrete erroneous state, we make use of the construction used in proving
proposition 3.3. Given a path x starting at the initial tuple (i, {i}) leading to an erroneous
tuple (a, A) of the abstract history graph, this construction can be used to give a fully
automated procedure to construct a finite computation y of a concrete system U", for
some n, ending in a state ¢ such that rep(y.t) = (a, A). In general, n is of size linear in
the length of z, viz., O(]S |2|S ‘) in the worst case. But, as mentioned above, in practice,
the number of states of the abstract history graph reachable from its initial state tend to
be small and consequently so does the length of y. The ability to automatically generate
error traces distinguishes our work from [J], where no effective way to generate error
traces was given.

We now illustrate the construction with a broken version of the MSI protocol (fig-
ure 3). The MSI protocol is clobbered by replacing the flush transition labeled with
PrWwrll from the shared state to the modified state by a low push transition labeled
with MoPrWr!l. In the abstract history graph, self loops are omitted for simplicity
reasons and erroneous tuples are shaded. Note that the erroneous pair (I, {l,S,M})
can be reached via the path (I,{l}) — (I,{I,S}) — (I,{l,S,M}) by firing a tran-
sition labeled with PrRd followed by a transition labeled with MoPrWr. From
this path we can get back a concrete computation of a system with 3 caches by fir-
ing transitions labeled with PrRd, PrRd and MoPrWr in the order listed, a stut-
tering of the sequence PrRd, MoPrWr. The resulting concrete computation is:
(L PR sy PEERY (s s) MO (M S 1), Here symbol a; la-
beling a transition indicates that process U; fires a transition of template U labeled
with a.

Rapid Parameterized Model Checking of Snoopy Cache Coherence Protocols 155

3.4 Automatic Construction of Pre-order

In practice, one can usually obtain the natural pre-order by drawing the diagram in levels,
reflecting how tightly a memory block in a given cache state is bound to the processor.
Such levels are used in the textbook by Culler [I§] et al. If not, we can efficiently exhibit
a feasible pre-order, =<, that can be imposed, or determine that none exists.

We proceed by constructing the labeled, directed graph Quy = (5, {=X,<,~ <}, E),
where E C S x {<,<,- <} x S is its edge set. For a,b € S, an edge of the form
(a, =<,b) represents a =< b, (a, <,b) indicates a < b and (a, - <,b) means —(a < b).
We construct Q7 as follows.

1. Initially, E = {(i, <,a)|a # i,a € S}. This is because of the assumption we
made in the system model that for each a # i, we have i < a.

2. For each non-local transition or non-flush broadcast send transitiorﬂ tr =
(a,I,b), we have =(b < a). Thus we augment F by adding the edge (b,—~ <,a).
Furthermore if (¢, 7?7, d) is a matching receive for ¢r such that ¢ # d, then we have that
d =< b < cand so we add the edges (d, <,b) and (b, <, ¢) to E. On the other hand if
(d,17?,d) is a matching receive for tr, then we have that —(b < d) and so we add the
edge (b,— <,d) to E. If E already contains an edge of the form (e, <, f), then in case
we add the edge (e, <, f) to E in the above step, we remove (e, =<, f) to ensure that
there is only one edge from e to f labeled with < or <.

Let @)}, be the subgraph of Qy that we get by deleting all edges labeled with — <.
Then we can impose a pre-order =< on the states of U compatible with its transitions iff

(1) there does not exist a cycle in ()7, containing an edge labeled with <; and

(2) for each edge (a, — <, b) of Qy, there do not exist two distinct maximal strongly
connected components of (J};, one containing state a and the other one containing state
b such that there is path from a to b in Q7.

Since the maximal strongly connected components of)7, can be constructed in time
linear in the size of Qy, viz., linear in |U]|, therefore the above mentioned conditions 1
and 2 can be checked in time quadratic in the size of U. Thus we can decide in O(|U |?)
time whether a desired pre-order can be imposed on S or not.

4 Applications

As applications, we consider model checking parameterized versions of all of the snoop
based cache protocols presented in [[19]. The translation from the state transition diagram
of a given protocol to its template is straightforward and syntactic and can be performed
in the same mechanical fashion as was done for the MSI protocol in section 2.1: Firing a
bold transition labeled with A/— and/or one that requires that no other cache currently
possesses the desired memory block does not affect the status of the memory block in
any other cache. Such a transition is therefore labeled with the local transition label 7
and in the second case also guarded with the A\ (i). Otherwise, a transition labeled by
A/B, where B # —, is labeled with the broadcast send label A!! while every transition

* Flush broadcast send transitions can be identified syntactically as all their matching receives
from every non-initial state transit to a unique state with the matching receive from i self-looping
on itself. Local transitions can be identified by the absence of matching receives.

156 E.A. Emerson and V. Kahlon

PrRd/~
Prwr/— PrRd/~

Prwr/—

\
\ BusRdX/
| Flush

1
I
I
1
\

\ BusRdX/
\Flush
\

/ Prwr!!

Bust}(/
Flush’,
Prwr/

BusRdX

Fig. 4. The Illinois MESI Cache Coherence Protocol and its template

generated by bus actions (represented by dashed lines) and labeled with B/C' is labeled
with the matching broadcast receive label A?7. If to fire the transition additionally
requires some other cache to possess the desired memory block then it is also guarded
by \/ —(i). Below we consider only the Illinois MESI protocol in detail, with some others
being handled in the full report [10].

4.1 The Illinois MESI Cache Coherence Protocol

The transition digram and the template for the Illinois MESI cache coherence protocol
is shown in figure 4. Formally the template is defined as U = (S, X, R, {i}) where,
S = {I,S,E,M} with the pre-order being given by | < S < E ~ M. The set X' =
{7, PrRd!l, PrRd??, PrWr!!, PrWr??}. The transitions are as defined below.

Empty Broadcasts (Local Transitions): (M, 7, 1), (E, 7, 1), (S, 7, 1), (I, 7, E), (S, 7,S),
(E,7,E), (M, 7,M). Note that the first three transitions are included because of the
assumption of initializability and are for simplicity reasons not shown in figure 4 nor
are broadcast receive transitions that are self loops.

Low-push sends: (I, PrRd!!,S).

Low-push receives: (M, PrRd??,S), (E, PrRd??,S).

Flush sends: (I, PrWr!l, M), (S, Prwr!l, M).

Flush receives: (M, PrWr??.1), (E, PrwWr??. 1), (S, Prwr??7.1).

The transitions (I, PrRd!!,S) and (I, 7, E) are labeled with \/ = (i) and /(i) respec-
tively, with the rest of the transitions being labeled with the frue guard.

We need to decide whether the following pairs are pairwise reachable: (M, M),
(M,E), (M,S), (E,E), (E,S).

Rapid Parameterized Model Checking of Snoopy Cache Coherence Protocols 157

4.2 Experimental Results

Here we summarize the results for a wide range of examples of cache coherence pro-
tocols. For detailed descriptions of these protocols refer to [19]. The column under #
of Abstract States refers to the number of reachable states in the abstract history graph
for protocols that don’t use conjunctive guards, viz., MSI, MESI, MOESI, Berkeley and
N+1; and in the modified abstract history graph for ones that use conjunctive guards,
viz., Illinois-MESI, Firefly and Dragon. It is worth noting that although in the worst
case the number of reachable abstract states in the modified abstract history graph cor-
responding to the template U = (S, R, ¥, i) could be as large as |S|2!°!, in practice it
typically turns out to be much smaller. For instance in the MESI protocol, the number of
reachable abstract states were 6, against a worst case possibility of 4 x 24 = 64 states. A
similar scenario holds for the other protocols. Thus, in conclusion, the abstract history
graph construction seems to work well in practice. The experiments were carried out
on a machine with a 797MHz Intel Pentium III processor and 256 Mb RAM. Below,
we tabulate the results for a variety of cache coherence protocols. The user time for
verifying each of the cache coherence protocols was less than 0.01 seconds.

lProtocol HPre—Order ‘# of Abstract States‘
MSI Invalid < Shared < Modified 5
MESI ||Invalid < Shared < Exclusive ~ Modified 6
Mlinois ||Invalid < Shared < Exclusive ~ Modified 6
MOESI ||Invalid < Owned =~ Shared < Exclusive ~ Modified 7
N+1 Invalid < Valid < Dirty 5
Berkeley Invalid < Owned Non-exclusively ~ Unowned, 5
Unowned < Owned Exclusively
Firefly ||Invalid < Shared < Dirty =~ Valid Exclusive 6
Dragon Invalid < Shared Clean ~ Shared Modified < Exclusive;
Exclusive =~ Modified 8

5 Concluding Remarks

The generally undecidable PMCP has received a good deal of attention in the literature.
A number of interesting proposals have been put forth, and successfully applied to cer-
tain examples ([[Z1626120l2/312°7/21]). Most of these works, however, suffer from the
drawbacks of being either only partially automated or being sound but not guaranteed
complete. Much human ingenuity may be required to develop, e.g., network invariants;
the method may not terminate; the complexity may be intractably high; and the under-
lying abstraction may only be conservative, rather than exact

Similar limitations apply to prior work on PMCP for cache protocols. Pong and
Dubois [25]] described methods that were sound but not complete, as they were based on
conservative, inexact abstractions. In [[14] a general framework of parameterized broad-
cast protocols was introduced and it was shown how certain simple cache protocols

5 However for frameworks that handle specialized applications domains decisions procedures
can be given that are both sound and complete and fully automatic and in some cases efficient
([3ITsITTiT2si24y).

158 E.A. Emerson and V. Kahlon

could be modeled. That framework, however, did not admit guarded transitions, neces-
sary to model many cache protocols such as Illinois (MESI). In [[L6], it was shown that
showed that PMCP for safety over such broadcast protocols of [14] is decidable using
the general backward reachability procedure of [[1]. However, the backward reachability
algorithm of [1]] that [[L6], makes use of, although general, suffers from the handicap that
the best known bound for its running time is not known to be primitive recursive [23]]. In
[22], Maidl, using a proof tree based construction, shows decidability of the PMCP for a
broad class of systems including broadcast protocols, but again the decision procedure
is not known to be primitive recursive. Moreover [22/16/14]] do not report experimental
results for cache protocols.

More recently, Delzanno [9] uses arithmetical constraints to model global states of
systems with many identical caches. This method uses invariant checking via backward
reachability analysis of [1]] and provides a broad framework for reasoning about cache co-
herence protocols but the procedure does not terminate on some examples. Furthermore,
this technique does not provide a way to generate error traces when a bug is detected.
In [17], it was shown that for a sub class of broadcast protocols called entropic broad-
cast protocols, a generalization of the Karp-Miller procedure for Petri nets terminates.
While mathematically elegant, the model does not allow for boolean guards necessary
for modeling protocols like Illinois-MESI, Firefly and Dragon. Also, no explicit bounds
were provided on the size of the resulting coverability tree (cf. [23]).

In this paper we have exploited the hierarchical organization inherent in the design
of snoopy cache protocols, representing and generalizing this organization using pre-
orders. We then present a specialized variant of the broadcast protocols model called
pre-ordered protocols tailored to capture snoopy cache coherence protocols. This has
allowed us to provide a unified, fully automated and efficient method to reason about
parameterized snoopy cache coherence protocols. Our method is unique in meeting all
these important criteria: (a) it is sound and complete; (b) it is algorithmic; () it is rapid
meaning reasonably efficient in principle: worst case complexity single exponential. (d)
it has broad modeling power: handles all 8 examples from Handy’s book; (e) it is rapid
also meaning demonstrably efficient in experimental practice; each example protocol
was verified — for parameterized correctness — in a fraction of a second; and (f) it
caters for error trace recovery.

References

1. P. Abdulla, K. Cerans, B. Jonsson, Y. K. Tsay. General Decidability Theorems for Infinite
State Systems. LICS. 1996.

2. P. Abdulla, A. Boujjani, B. Jonsson and M. Nilsson. Handling global conditions in parame-
terized systems verification. CAV 1999.

3. P.Abdulla and B. Jonsson. On the existence of network invariants for verifying parameterized
systems. In Correct System Design - Recent Insights and Advances, 1710, LNCS, pp 180-197,
1999.

4. K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters, 15, pages 307-309, 1986.

5. T.Arons, A. Pnueli, S. Ruah, J, Xu and L. Zuck. Parameterized Verification with Automatically
Computed Inductive Assertions. CAV 2001, LNCS 2102, 2001.

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

Rapid Parameterized Model Checking of Snoopy Cache Coherence Protocols 159

. M.C.Browne, E.M. Clarke and O. Grumberg. Reasoning about Networks with Many Identical

Finite State Processes. Information and Control, 81(1), pages 13-31, April 1989.

. E.M. Clarke, O. Grumberg and S. Jha. Verifying Parameterized Networks using Abstraction

and Regular Languages. CONCUR. LNCS 962, pages 395-407, Springer-Verlag, 1995.

. D.E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software Approach.

Morgan Kaufmann Publishers, 1998.

. G. Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols. CAV

2000, 51-68.

E.A. Emerson and V. Kahlon. This paper, full version. Available at
http://www.cs.utexas.edu/users/{emerson,kahlon}/tacas03/

E.A. Emerson and V. Kahlon. Reducing Model Checking of the Many to the Few. CADE-17.
LNCS , Springer-Verlag, 2000.

E.A. Emerson and V. Kahlon. Model Checking Large-Scale and Parameterized Resource
Allocation Systems. TACAS, 2002.

E.A. Emerson and K.S. Namjoshi. Reasoning about Rings. POPL. pages 85-94, 1995.

E.A. Emerson and K.S. Namjoshi. On Model Checking for Non-Deterministic Infinite-State
Systems. LICS 1998.

E.A. Emerson and K.S. Namjoshi. Automatic Verification of Parameterized Synchronous
Systems. CAV. LNCS , Springer-Verlag, 1996.

J. Esparza, A Finkel and R. Mayr, On the Verification of Broadcast Protocols. LICS 1999.
A. Finkel and J. Leroux. A finite covering tree for analyzing entropic broadcast protocols.
Proc. VCL 2000. Report DSSE-TR-2000-6, Univ. Southampton, GB.

S.M. German and A.P. Sistla. Reasoning about Systems with Many Processes. J. ACM, 39(3),
July 1992.

J. Handy. The Cache Memory Book. Academic Press, 1993.

R. P. Kurshan and K. L. McMillan. A Structural Induction Theorem for Processes. PODC.
pages 239-247, 1989.

D. Lesens, N. Halbwachs and P. Raymond. Automatic Verification of Parameterized Linear
Network of Processes. POPL 1997. pp 346-357, 1997.

Parallel Coordination Programs L.Acta Informatica 21, 1984.

M. Maidl. A Unifying Model Checking Approach for Safety Properties of Parameterized
Systems. CAV 2001.

K. McAloon. Petri Nets and Large Finite Sets. Theoretical Computer Science 32, pp. 173-183,
1984.

A. Pnueli, S. Ruah and L. Zuck. Automatic Deductive Verification with Invisible Invariants.
TACAS 2001, LNCS, 2001.

F. Pong and M. Dubois. A New Approach for the Verification of Cache Coherence Protocols.
IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 8, August 1995.

A. P. Sistla, Parameterized Verification of Linear Networks Using Automata as Invariants,
CAV, 1997.

P. Wolper and V. Lovinfosse. Veritying Properties of Large Sets of Processes with Network
Invariants. In J. Sifakis(ed) Automatic Verification Methods for Finite State Systems, Springer-
Verlag, LNCS 407, 1989.

	Introduction
	Preliminaries
	A Motivating Example
	The System Model: Pre-ordered Broadcast Protocols

	Safety Properties
	Systems without Conjunctive Guards
	Adding the Specialized Conjunctive Guard
	Generating Error Traces
	Automatic Construction of Pre-order

	Applications
	The Illinois MESI Cache Coherence Protocol
	Experimental Results

	Concluding Remarks

