Skip to main content

Multiple Genetic Snakes for Bone Segmentation

  • Conference paper
  • First Online:
Applications of Evolutionary Computing (EvoWorkshops 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2611))

Included in the following conference series:

Abstract

Clinical assessment of skeletal age is a frequent, but yet difficult and time-consuming task. Automatic methods which estimate the skeletal age from a hand radiogram are currently being studied. This work presents a method to segment each bone complex in the radiogram, using a modified active contour approach. Each bone is modelled by an independent contour, while neighbouring contours are coupled by an elastic force. The optimization of the contour is done using a genetic algorithm. Experimental results, carried out on a portion of the whole radiogram, show that coupling of deformable contours with genetic optimization allows to obtain an accurate segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greulich, W.W., Pyle, S.I.: Radiographic atlas of skeletal development of the hand and wrist. 2nd edn. Stanford University Press, Palo Alto, CA (1959)

    Google Scholar 

  2. Tanner, J.M., Whitehouse, R.H., Marshall, W.A., Healy, M.J.R.: Assessment of skeletal maturity and prediction of adult height (TW2 method). 2nd edn. Academic Press, London (1983)

    Google Scholar 

  3. Ballerini, L.: Genetic snakes for medical images segmentation. In: Evolutionary Image Analysis, Signal Processing and Telecommunications. Volume 1596 of Lectures Notes in Computer Science., Springer (1999) 59–73

    Google Scholar 

  4. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1 (1988) 321–331

    Article  Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  6. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Medical Image Analysis 1 (1996) 91–108

    Article  Google Scholar 

  7. Jain, A.K., Zhong, Y., Dubuisson-Jolly, M.P.: Deformable template models: A review. Signal Processing 71 (1998) 109–129

    Article  MATH  Google Scholar 

  8. Xu, C., Pham, D.L., Prince, J.L.: Image segmentation using deformable models. In Sonka, M., Fitzpatrick, J.M., eds.: Handbook of Medical Imaging. Volume 2. SPIE Press (2000) 129–174

    Google Scholar 

  9. Cheung, K.W., Yeung, D.Y., Chin, R.T.: On deformable models for visual patter recognition. Patter Recognition 35 (2002) 1507–1526

    Article  MATH  Google Scholar 

  10. Storvik, G.: A bayesian approach to dynamic contours through stochastic sampling and simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (1994) 976–986

    Article  Google Scholar 

  11. Grzeszczuk, R.P., Levin, D.N.: Brownian strings: Segmenting images with stochastically deformable contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 110–1114

    Article  Google Scholar 

  12. Amini, A., Weymouth, T., Jain, R.: Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 855–867

    Article  Google Scholar 

  13. Geiger, D., Gupta, A., Costa, L., Vlontzos, J.: Dynamic programming for detecting, tracking and matching deformable contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995) 294–302

    Article  Google Scholar 

  14. Williams, D.J., Shah, M.: A fast algorithms for active contours and curvature estimation. CVGIP: Image Understanding 55 (1992) 14–26

    Article  MATH  Google Scholar 

  15. Ji, L., Yan, H.: Attractable snakes based on the greedy algorithm for contour extraction. Pattern Recognition 33 (2002) 791–806

    Article  Google Scholar 

  16. MacEachern, L.A., Manku, T.: Genetic algorithms for active contour optimization. In: Proc. IEEE International Symposium on Circuits and Systems. Volume 4. (1998) 229–232

    Google Scholar 

  17. Tanatipanond, T., Covavisaruch, N.: An improvement of multiscale approach to deformable contour for brain MR images by genetic algorithms. In: Proc. IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Phucket, Thailand (1999) 677–680

    Google Scholar 

  18. Ooi, C., Liatsis, P.: Co-evolutionary-based active contour models in tracking of moving obstacles. In: Proc. International Conference on Advanced Driver Assistance Systems. (2001) 58–62

    Google Scholar 

  19. Toet, A., Hajema, W.P.: Genetic contour matching. Pattern Recognition Letters 16 (1995) 849–856

    Article  Google Scholar 

  20. Cootes, T., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Computer Vision and Image Understanding 61 (1995) 38–59

    Article  Google Scholar 

  21. Ru., C.F., Hughes, S.W., Hawkes, D.J.: Volume estimation from sparse planar images using deformable models. Image and Vision Computing 17 (1999) 559–565

    Article  Google Scholar 

  22. Undrill, P.E., Delibasis, K., Cameron, G.G.: An application of genetic algorithms to geometric model-guided interpretation of brain anatomy. Pattern Recognition 30 (1997) 217–227

    Article  Google Scholar 

  23. Mignotte, M., Collet, C., Pèrez, P., Bouthemy, P.: Hybrid genetic optimization and statistical model-based approach for the classification of shadow shapes in sonar images. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 129–141

    Article  Google Scholar 

  24. Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based interactive segmentation of 3D medical images. Image and Vision Computing 17 (1999) 881–895

    Article  Google Scholar 

  25. Schraudolph, N.N., Grefenstette, J.J.: A user’s guide to GAucsd 1.4. Technical Report CS92-249, Computer Science and Engineering Department, University of California, San Diego, La Jolla, CA (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ballerini, L., Bocchi, L. (2003). Multiple Genetic Snakes for Bone Segmentation. In: Cagnoni, S., et al. Applications of Evolutionary Computing. EvoWorkshops 2003. Lecture Notes in Computer Science, vol 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-36605-9_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00976-4

  • Online ISBN: 978-3-540-36605-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics