Abstract
The present article puts forward a method for an interactive model generation through the use of Genetic Algorithms applied to small populations. Micropopulations actually worsen the problem of the premature convergence of the algorithm, since genetic diversity is very limited. In addition, some key factors, which modify the changing likelihood of alleles, cause the likelihood of premature convergence to decrease. The present technique has been applied to the design of 3D models, starting from generic and standard pieces, using objective searches and searches with no defined objective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bentley P. (1999) From Coffee Tables to Hospitals: Generic Evolutionary Design, Evolutionary design by computers, Morgan-Kauffman, pp. 405–423.
Berlanga A., Isasi P. Segovia J. (2000) Interactive Evolutionary Computation with Small Population to Generate Gestures in Avatars, Proceedings of GECCO 2001, Artificial Life, Adaptative Behavior, and agents
Chambers L. (1995) Practical handbook of genetic algorithms. Vols. 1,2 editado por Lance Chambers, CRC Press.
Dawkins R. (1986) The blind watchmaker, Longman Scientific and Technical, Harlow.
F.J. Vico, F.J. Veredas, J.M. Bravo, J. Almaraz Automatic design sinthesis with artificial intelligence techniques. Artificial Intelligence in Engineering 13 (1999) 251–256
Holland J.H. (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press.
Holland J. H. (1991) The Royal Road for Genetic Algorithms: Fitness Landscapes and GA Performance. Proceedings of the First European Conference on Artificial Life, Cambridge, MA: MIT Press. pp.1–3, 6-7.
Holland J.H. (1995) Hidden order: how adaptation builds complexity. Addison Wesley, Reading Massachussets.
Moore, J.H. (1994) GAMusic: Genetic algorithm to evolve musical melodies. Windows 3.1 Software disponible en:http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/ genetic/ga/systems/ gamusic/0.html.
Ngo J.T. y Marks J., (1993), Spacetime Constraints Revisited. Computer Graphics, Annual Conference Series pp. 335–342.
Rowland D. (2000) Evolutionary Co-operative Design Methodology: The genetic sculpture park. Proceeedings of the Genetic ad Evolutionary Computation Conference Workshop, Las Vegas.
Santos A., Dorado J., Romero J., Arcay B., Rodríguez J. (2000) Artistic Evolutionary Computer Systems, Proceeedings of the Genetic ad Evolutionary Computation Conference Workshop, Las Vegas.
Segovia J., Antonio A., Imbert R. Herrero P., Antonini R. (1999) Evolución de gestos en mundos virtuales, Proceedings of CAEPIA 99.
Sims K., (1991) Artificial Evolution for Computer Graphics, Computer Graphics, Vol. 25,(4), pp. 319–328.
Sims K., (1994a) Evolving Virtual Creatures. In Computer Graphics. Annual Conference Series (SIGGRAPH’ 94 Proceedings), Julio 1994, pp. 15–22.
Sims K., (1994b) Evolving 3D Morphology and Behaviour Schemes. In Fogel, L. J. Angeline, P.J. and Back, T. Proceedings of the 5th Annual Conference on Evolutionary Programming, Cambridge, MA: MIT Press, pp. 121–129.
Unemi T. (2000) SBART 2.4: an IEC Tool for Creating 2D images, movies and collage, Proceedings of the Genetic and Evolutionary Computation Conference Program, Las Vegas.
Y. Sáez, O. Sanjuan, J. Segovia (2002) AEB’02 Algoritmos Genéticos para la Generación de Modelos con Micropoblaciones, Mérida, España.
Machado, P., Cardoso, A., All the truth about NEvAr. Applied Intelligence, Special issue on Creative Systems, Bentley, P. Corne, D. (eds), Vol. 16, Nr. 2, pp. 101–119, Kluwer Academic Publishers, 2002.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sáez, Y., Sanjuán, O., Segovia, J., Isasi, P. (2003). Genetic Algorithms for the Generation of Models with Micropopulations. In: Cagnoni, S., et al. Applications of Evolutionary Computing. EvoWorkshops 2003. Lecture Notes in Computer Science, vol 2611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36605-9_52
Download citation
DOI: https://doi.org/10.1007/3-540-36605-9_52
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00976-4
Online ISBN: 978-3-540-36605-8
eBook Packages: Springer Book Archive