Abstract
Perceptual based additive watermarking algorithms have good performance in literature, while the optimal detection of such watermarks under attacks remains a problem due to the inaccurate estimation of actual noise distribution. In this paper, a hybrid watermark with low density diversity is proposed. By accurately estimating the noise shape from diversity, the detector is noise adapted and optimal detection will be achieved. The trade-off caused by this diversity is negligible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zeng, W., Liu, B.: A statistical watermark detection technique without using original images for resolving rightful ownerships of digital images. Vol.8. No.11. IEEE Trans. Image Processing, (1999) 1534–1548.
Podilchuk, C., Zeng, W.: Image-adaptive watermarking using visual models. Vol.16. No.4. IEEE J. Select Areas Commun. (1998) 525–539.
Hernandez, J. R., Perez-Gonzalez, F.: Statistical analysis of watermarking schemes for copyright protection of images. Vol87. No.7. Proc. of the IEEE. (1999) 1142–1166.
Hernandez, J.R., Amado, M., Perez-Gonzalez, F.: DCT-domain watermarking techniques for still images: detector performance analysis and a new structure. Vol.9. No.1. IEEE Trans. Image Processing. (2000) 55–68.
Barni, M., Bartolini, F.: A. D. Rosa etc, A new decoder for the optimum recovery of nonadditive watermarks. Vol.10. No.5. IEEE Trans. Image Processing. (2001) 755–766.
Chen, Q., Huang, T. S.: An additive approach to transform-domain information hiding and optimum detection structure. Vol.3. No.3. IEEE Trans. Multimedia. (2001) 273–284.
Kutter, M., F. Petitcolas, A. P., A fair benchmark for image watermarking systems, V3657. Proceedings of SPIE. San Jose, CA. Jan. (1999) 219–239.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shao, Y., Wu, G., Lin, X. (2003). Optimal Detection of Transform Domain Additive Watermark by Using Low Density Diversity. In: Kim, H.J. (eds) Digital Watermarking. IWDW 2002. Lecture Notes in Computer Science, vol 2613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36617-2_10
Download citation
DOI: https://doi.org/10.1007/3-540-36617-2_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-01217-7
Online ISBN: 978-3-540-36617-1
eBook Packages: Springer Book Archive