

City, University of London Institutional Repository

Citation: MacFarlane, A., Robertson, S. E. & McCann, J. A. (2003). Parallel computing for

term selection in routing/filtering. Paper presented at the 25th European Conference on
Information Retrieval Research (ECIR 2003), 14-04-2003 - 16-04-2003, Pisa, Italy.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4500/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Parallel	 Computing	 for	 Term	 Selection	 in	
Routing/Filtering	

A. MacFarlane1, S.E.Robertson1,2 and J.A.McCann3

 1Centre for Interactive Systems Research, City University, London

 2Microsoft Research Ltd, Cambridge CB2 3NH
3Department of Computing, Imperial College London

{email: andym@soi.city.ac.uk}

Abstract: It has been postulated that a method of selecting terms in either routing
or filtering using relevance feedback would be to evaluate every possible
combination of terms in a training set and determine which combination yields the
best retrieval results. Whilst this is not a realistic proposition because of the
enormous size of the search space, some heuristics have been developed on the
Okapi system to tackle the problem which are computationally intensive. This
paper describes parallel computing techniques that have been applied to these
heuristics to reduce the time it takes to select to select terms.

1. Introduction

 This paper describes parallel computing techniques that can be applied to a very
large search space for relevance feedback for routing/filtering that has successfully been
used on Okapi experiments at TREC [1-4]. The routing task we are considering is the
situation where a number of relevance judgements have been accumulated and we want
to derive the best possible search formulation for future documents. The filtering task is
an extension of this, but a threshold for documents is applied i.e. a binary yes/no decision
is made on one document at a time as to whether it will be presented to the user. In [1] it
was stated that an alternative to some term ranking methods described would be to
"evaluate every possible combination of terms on a training set and use some
performance evaluation measure to determine which combination is best". Such a method
is very computationally intensive, and certainly not practicable even with parallel
machinery. The complexity of one routing session before re-weighting is 2t where t is the
number of terms. For just 300 terms, our search space is 2300 or 2.04e+90 combinations.
Since the term scores also can be re-weighted any number of times, the order for the
algorithm's time complexity cannot be stated. Clearly some sort of limit must be set both
on the number of times re-weighting is allowed and the total number of combinations
inspected for an information need. We use combinatorial optimisation techniques on this
search space and apply parallelism to improve the speed of the techniques studied. The
methods used by Okapi at TREC are briefly described in section 2 and the strategy for
applying parallelism to these methods is described in section 3. The data and settings
used for the experiments are described in section 4. Section 5 describes the experimental
results. Conclusions and further work in the area are outlined in section 6.

2. Methods used by Okapi at TREC

 Okapi at TREC [1-4] applied three algorithms to the term selection problem.
Find Best (FB), Choose First Positive (CFP) and Choose All Positive (CAP). With the FB
algorithm each term is evaluated in one iteration and the term yielding the best score from
the term set chosen: the algorithm stops when a pre-determined threshold is reached. An
evaluation in this context is a retrieval followed by the application of some function on
the search results to produce a score: for example average precision. Terms that increase
this score are retained/removed (see below). The threshold that halts the procedure is
reached when there is little or no increase in the score. The other algorithms work in
much the same way, but with minor differences. CFP works by choosing the term if it is
the first term that increases the score. CAP is an extension of FB/CFP and works by
including/excluding all terms that increase the score in an iteration. Each chosen term is
accumulated in a query set, the final version of which is applied to a test set. Within each
algorithm, two operations for choosing terms can be used: add term to the query or delete
term from the query. The add term operation can be augmented by reweighing the
retrieval selection value: in the case of the Okapi experiments this is either a reduction by
a factor of 0.67 or an increase by a factor of 1.5. The Find Best and Choose All Positive
algorithms are Steepest-ascent Hill-Climbers while Choose First Positive is a First-ascent
Hill-Climber [5].

3. Applying parallelism to the Okapi methods

 master Interconnecting Network

 slave j slave j+1 …… slave n

 Process

Processors

Fig 1 - Master/Slave Router Topology

 An approach to applying parallel computation to term selection is to think in
terms of term sets and what needs to be done to the Hill-Climber algorithms to reduce
their run time. Since the evaluation of operations on terms can be done independently we
can distribute the term set to a number of slave processes which apply the required Hill-
Climber algorithm to each sub-set of the term set: an individual term is only evaluated on
one processor. Thus by applying inter-set parallelism to the evaluation of terms in the
evaluation set, we aim to speed up each iteration. We use a method of parallelism known

as the domain decomposition strategy [6]: the search space is divided amongst available
slave processors, controlled by a master process (see fig 1). One of the advantages of this
method is that communication costs are kept to a minimum as processes involved in
evaluating terms do not need to communicate to complete their task: however there is an
overhead associated with checking stopping criterion in every iteration. This overhead
involves both the retrieval of the best yielding term or terms from all slaves by the master
and broadcast of the best term data back to the slaves. Each slave has access to the
training set on its own local disk in order to increase the flexibility of the parallel
algorithms and reduce the overheads of broadcasting term information from the master
process to slaves. This method of data distribution is known as Replication.

The combinations of algorithms and operations described in this paper are: Find
Best, Choose First Positive and Choose All Positive algorithms with add only,
add/remove operations and add with re-weighting. It should be noted that the CAP
algorithm is a purely sequential algorithm to which inter-set parallelism cannot be
directly applied, as the results are the cumulative effect of evaluations in one iteration.
However the CAP algorithm can be applied to each sub-set of the term set and we refer to
revised version as the Choose Some Positive (CSP) algorithm: we can regard CSP as a
compromise between the FB/CFP algorithms and CAP algorithm. In the CSP algorithm
the best yielding sub-set of the term set from one process only is chosen. CSP is
implemented in terms of CAP. Choose First Positive differs slightly in that it is possible
that a better term could be chosen in one inner iteration for each smaller sub-set of the
term set (or increasing number of processes). It is possible the terms selected by the Find
Best algorithm may differ slightly over runs with varying numbers of processes, possibly
affecting the evaluation score. This is because two or more terms may have the same
effect when applied to the query and the term that is chosen first amongst these equal
terms will be the term used. When the number of processors equals the number of
evaluation terms, all term selection algorithms are identical; i.e. they all reduce to Find
Best.

4. Description of the data and settings used in experiments

 The database used for the experiments was the Ziff-Davis collection from the
TREC-4 disk 3 that is 349 Mb in size with a total number of 161,021 records [7]. Three
databases were created for the Ziff-Davis collection: an extraction database, a selection
database (both of which form the training set) and a test database. Our focus here is on
the training set. We use the extraction database to choose the initial set of terms for the
queries using the relevance judgements, and then train the queries on the selection
database using the Okapi Hill-Climbers. We used a total of 19 TREC-4 topics on the Ziff-
Davis database for these experiments. These topics were chosen on the basis of the
number of relevance judgements available for routing/filtering: it was felt that topics with
too few relevance judgements (i.e. one or two) would not be of much use in the
optimisation process due to excessive overfitting (overfitting can occur when term
selection mechanism overtrains). The distribution of relevance judgements for the
database was as follows; 1868 (39%) for the extraction set, 1469 (30%) for the selection
set and 1483 (31%) for the test set.
 The timing metrics we use to measure retrieval efficiency are as follows. For
each run we declare the average elapsed time in seconds for term selection over all topics.

We define selection efficiency as the improvement in average elapsed time by using
parallelism. We use the standard parallel measures:

· Speedup: defined as the increase in speed from 1 to n processors and found by
dividing time spent on computation using 1 processor by time using n
processors.

· Parallel efficiency: defined as speedup divided by n processors giving an idea of
how well processors are being used on a parallel system.

· Load imbalance: we use a metric called LI that is the ratio of the maximum
elapsed time over all the processors divided by the average elapsed time [8]: a
perfect load balance would achieve an LI of 1.0.

As our focus is on speeding up the algorithms, we do not discuss retrieval effectiveness
issues: experiments done by Okapi at TREC have shown that an increase in retrieval
effectiveness is available [1-4]. We present runs on 1 to 7 processors: the hardware used
for the research was the Fujitsu AP3000 at the Australian National University.

5 Experimental results

5.1 Elapsed time for term selection

0

100

200

300

400

500

1 2 3 4 5 6 7
slave nodes

T
im

e:
 s

ec
s

FB
CFP
CSP

Fig 2. Add only average term selection

elapsed time in seconds

0
200
400
600
800

1000
1200
1400
1600

1 2 3 4 5 6 7
slave nodes

T
im

e:
 s

ec
s

FB
CFP
CSP

Fig 3. Add remove average term selection

elapsed time in seconds

 From figs 2 to 4 it can be seen how expensive the application of the term
selection algorithms can be, with average elapsed time running into hundreds of seconds
and in some cases thousands of seconds. Parallelism has different effects on individual
term selection methods which can be either beneficial or detrimental. The FB algorithm is
the term selection method which benefits most from the application of parallelism,
showing a linear time reduction on all node set sizes. FB also outperforms the other term
selection algorithms using more processors (this can be seen from all data presented in
figs 2 to 4). Linear time reductions are also found with most parallel runs on CFP using
any operation (this is most noticeable with add only operation - see fig 2). With regard to
CSP using any operation, elapsed times do not follow any trend and vary unpredictably
with slave node set size (particularly using add only operation - see fig 2). The most
expensive operation in the majority of cases is add reweight: for example FB run times
are roughly four times as slow on add reweight as the other operations. It is generally

more expensive to use the add/remove operation compared with add only particularly
with the FB algorithm.

slave nodes

Ti
m

e:
 s

ec
s

0

500

1000

1500

2000

1 2 3 4 5 6 7

FB
CFP
CSP

Fig 4. Add reweight average term selection

elapsed time in seconds

5.2 Load imbalance

1

1.05

1.1

1.15

1.2

2 3 4 5 6 7
slave nodes

L
I

FB
CFP
CSP

Fig 5. Add only load imbalance for term
selection

1

1.05

1.1

1.15

1.2

2 3 4 5 6 7
slave nodes

L
I

FB
CFP
CSP

Fig 6. Add remove load imbalance for term

selection

The imbalance for term selection is low and does not reach a point where load balance is
a significant problem for the algorithms: for example an LI of 2.0 would mean halving
the effective speed of the machine and the LI figures in figs 5 to 7 are nowhere near that
level. However, general trend for load imbalance for most experiments is upwards. The
exception is CSP with add remove operation which shows a reduced level of load balance
over all runs. There is a clear increase in load imbalance as the number of slave nodes is
increased, which demonstrates the need for some form of load balancing technique if
many more slave nodes were to be used in optimising on a training set of this size. This
imbalance contributes in part to the overall loss in term selection efficiency recorded.

1

1.05

1.1

1.15

1.2

2 3 4 5 6 7
slave nodes

LI

FB
CFP
CSP

Fig 7. Add reweight load imbalance for term selection

5.3 Speedup and parallel efficiency

0

1

2

3

4

5

2 3 4 5 6 7
slave nodes

S
p

ee
d

u
p

FB
CFP
CSP

Fig 8. Add only operation speedup for
term selection

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7
slave nodes

E
ff

ic
ie

n
cy

FB
CFP
CSP

Fig 9. Add only parallel efficiency for
term selection

0

1

2

3

4

5

2 3 4 5 6 7
slave nodes

S
p

ee
d

u
p

FB
CFP
CSP

Fig 10. Add remove operation speedup
for term selection

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7
slave nodes

E
ff

ic
ie

n
cy FB

CFP
CSP

Fig 11. Add remove operation parallel
efficiency for term selection

 The speedup and efficiency figures are shown in figs 8 to 13. In terms of
speedup and parallel efficiency, the FB method shows improvement on all levels of
parallelism investigated. Speedup is near linear at 7 slave nodes with parallel efficiency
above the 70% mark for any operation. However the speedup and parallel efficiency for
CFP is very poor for all three term operations. In most cases a speedup of less than two is
registered: a number of factors are responsible for the poor parallel performance. An
increase in evaluations with more slave nodes is a significant factor as well as the
overhead at the synchronisation point together with load imbalance. For example CFP

with add reweight increases the evaluations per topic from 3787 on 1 slave node to 5434
on 7 slave nodes: the same trend is found with other operations.

0

1

2

3

4

5

2 3 4 5 6 7
slave nodes

S
p

ee
d

u
p

FB
CFP
CSP

Fig 12. Add reweight operation speedup
for term selection

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7
slave nodes

E
ff

ic
ie

n
cy FB

CFP
CSP

Fig 13. Add reweight operation parallel
efficiency for term selection

Much the same can be said for CSP, apart from add remove operation which

does actually show some level of speedup. However, overheads are a much less
significant factor for CSP while the increase in evaluations plays a more important part:
for example the number of evaluations using the add reweight operation increased from
2766 per topic on 1 slave node to 8234 on 7 slave nodes. There are fewer iterations with
the CSP method, but individual iterations are much longer. Slowdown for CSP on add
only and add reweight is recorded for 2 slave nodes. It could be argued that using
speedup and parallel efficiency to measure the parallel performance of the CSP algorithm
is unfair as the parallelism itself imposes an extra workload for the method. However
demonstrating that some parallel performance improvement is available while still being
able to examine some of the search space is, we believe, worthwhile.

6. Conclusion and further work

 We have found a method of parallelism which by focusing on the main task,
namely the evaluation of terms, can speed up the computation of the heuristics and
examine more of the search space. We have shown that the speed advantage found with
the FB selection method is significant. We believe it is possible to improve the selection
efficiency of both FB and CSP using some form of dynamic re-distribution technique for
terms in the query. Experiments with CFP are less conclusive and show difficulties
particularly with load balance. It may be possible to improve the load balance of CFP but
only at a large overhead cost.
 We could consider the use of machine learning [9] tabu search [6] and pattern
recognition [10] techniques in order to optimise routing/filtering queries. A great deal of
research into search space methods has been done in machine learning using methods
such as genetic algorithms and neural networks that are both very computationally
intensive processes. Tabu search is a meta-heuristic which can be used to manage other
heuristics in order to examine parts of the search space which would not normally be
examined with a single search strategy. Some of the selection algorithms used in pattern
recognition are similar to the Hill-Climbers used in this study [10], particularly Find Best
with add only and remove only operations. We could therefore treat the query
optimisation discussed in this research as a pattern recognition problem, treating different

combinations of the query as a pattern. The problem would be to find the best yielding
‘pattern’ in the query. Parallelism could be used to speed up these methods, providing
they are able to show retrieval effectiveness benefit on the test set.

7. Acknowledgements

 This work was supported by the British Academy under grant number IS96/4203. We are
grateful to the Australian National University, Canberra for the of their Fujistsu AP3000
parallel computer in order to conduct these experiments. We owe particular thanks to
Gordon Smith, David Hawking and David Sitsky for their advice on many issues. We
would also like to thank David Hawking for suggesting the use of replication for the
method of data distribution.

References

1. S.E. Robertson, S.Walker, S. Jones, M.M. Hancock-Beaulieu and M Gatford, Okapi

at TREC-3. In: D.K.Harman, (ed.): Proceedings of the Third Text Retrieval
Conference, NIST Gaithersburg (1995) 109-126

2. S.E. Robertson, S. Walker, S. Jones, M.M. Beaulieu M. Gatford and A. Payne, Okapi
at TREC-4. In: D.K.Harman, (ed.): Proceedings of the Fourth Text Retrieval
Conference, , NIST Gaithersburg (1996) 73-96

3. M.M. Beaulieu, M. Gatford, X. Huang, S.E. Robertson, S. Walker and P. Williams,
Okapi at TREC-5. In: Voorhees E.M and D.K.Harman, (eds.): Proceedings of the
Fifth Text Retrieval Conference, NIST Gaithersburg (1997) 143-166.

4. S. Walker, S.E.Robertson and M Boughanem, OKAPI at TREC-6. In: Voorhees
E.M and D.K.Harman, (eds.): Proceedings of the Sixth Text Retrieval Conference,
NIST Gaithersburg (1998) 125-136

5. A. Tuson, Optimisation with Hillclimbing on Steriods: An Overview of
Neightbourhood Search Techniques. Proceedings of the 10th Young Operational
research Conference, Operational Research Society (1998) 141-156

6. F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.
7. D. Harman, Overview of the Fourth Text REtrieval Conference (TREC-4). In:

D.K.Harman, (ed.): Proceedings of the Fourth Text Retrieval Conference, NIST
Gaithersburg (1996) 1-24

8. D. Hawking, “The Design and Implementation of a Parallel Document Retrieval
Engine”, Technical Report TR-CS-95-08, Department of Computer Science,
Australian National University (1995)

9. A. Hutchinson, Algorithm Learning, Clarendon Press (1994)
10. J. Kittler, Feature selection and extraction. In: T.Y. Young and K. Fu, (ed.):

Handbook of Pattern Recognition and Image Processing, Academic Press (1986) 59-
83

