
Evidence that Incremental Delta-Bar-Delta Is an

Attribute-Efficient Linear Learner

Harlan D. Harris

University of Illinois at Urbana-Champaign, Department of Computer Science
MC-258, Urbana, IL 61801 USA

hharris@uiuc.edu

Abstract. The Winnow class of on-line linear learning algorithms
[10,11] was designed to be attribute-efficient. When learning with many
irrelevant attributes, Winnow makes a number of errors that is only log-
arithmic in the number of total attributes, compared to the Perceptron
algorithm, which makes a nearly linear number of errors. This paper
presents data that argues that the Incremental Delta-Bar-Delta (IDBD)
second-order gradient-descent algorithm [14] is attribute-efficient, per-
forms similarly to Winnow on tasks with many irrelevant attributes, and
also does better than Winnow on a task where Winnow does poorly. Pre-
liminary analysis supports this empirical claim by showing that IDBD,
like Winnow and other attribute-efficient algorithms, and unlike the Per-
ceptron algorithm, has weights that can grow exponentially quickly. By
virtue of its more flexible approach to weight updates, however, IDBD
may be a more practically useful learning algorithm than Winnow.

1 Introduction

Linear learning algorithms make predictions by computing linear functions of
their inputs. Since linear learners aren’t capable of representing or learning non-
linear concepts, practical use often requires either layering multiple linear learn-
ers and using a backpropagation algorithm, or generating an expanded feature
space. Expanded feature spaces typically involve generating combinations of the
original features, resulting in very large numbers of attributes irrelevant to the
concept to be learned. The two algorithms most studied for use with this ap-
proach have been the Perceptron algorithm and Winnow [10,8,12,7]. Some learn-
ing domains such as computer vision and natural language processing naturally
provide very large feature spaces with many irrelevant attributes, even without
an expanded feature space. In this paper, I provide evidence that the Incremental
Delta-Bar-Delta (IDBD) algorithm [14] combines the attribute-efficient proper-
ties of Winnow with additional robustness and flexibility, and is particularly
useful for learning when many attributes may be irrelevant.

In the on-line learning framework, the learner repeatedly performs a pre-
diction task and receives a supervised training signal. Examples x are selected
from an instance space, and are labeled by a concept c in a concept space. For
each trial, the learner is given the example, predicts the example’s label, e.g.

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 135–147, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

136 Harlan D. Harris

p ∈ {−1, 1}, and then receives the true label, e.g. � ∈ {−1, 1}, where � = c(x).
The goal of an on-line learner is to minimize the total number of mistakes (� �= p)
made in the prediction task while learning concept c.

For a linear learner, the concept space is linear functions, as represented by
a linear threshold unit, or Perceptron. Given an input vector x, of width n, a
Perceptron computes the function p = sign(w·x), wherew is the weight vector of
the Perceptron. Since the hyperplane defined by the weight vector alone always
includes the zero, Perceptrons frequently include a fixed or trainable bias weight.

In order to learn non-linearly-separable functions, a common approach is to
generate conjunctions of the inputs, either explicitly [12], or using kernel func-
tions [2]. Although arbitrary DNF expressions can then be represented, linear
functions being adequate to represent disjunctions of these conjunctions, several
issues remain. There are an exponential number of conjunctions of the n input
features, requiring exponential time and space to process. Use of kernel functions
present other problems, particularly in domains where the input space is natu-
rally large and mostly irrelevant [7]. In perhaps the most important problem for
on-line learning, the number of examples needed to learn may increase linearly
with the size of the expanded input space. An attribute-efficient algorithm is one
in which the number of required examples increases only logarithmically in the
number of irrelevant features.

In an engineering setting, these expanded feature space approaches have been
used most commonly in natural language processing (e.g., [12]), in which the
presence or absence of particular words or word combinations leads to very
large numbers of sparse, irrelevant features. Valiant [15] motivates this type
of expanded-basis learning by reviewing biological systems, which are able to
learn quickly in settings with very large numbers of interconnected neurons.
For example, in the cerebellum, the neuronal architecture closely resembles the
expanded feature space and linear learner paradigm [5,13].

2 Algorithms

2.1 Perceptron Learning Rule

The Perceptron learning rule trains a linear threshold unit (Perceptron) by
adding a fraction of each mis-predicted input vector to the weight vector.

wi ← wi + η(�− p)xi, (1)

where η ∈ (0, 1) is a learning rate parameter. The Perceptron rule performs
incremental gradient descent in weight space. Variations include the Least-Mean-
Square (LMS) rule (for non-thresholded linear units), and backpropagation (for
multi-layer networks).

2.2 Winnow

The Winnow algorithms were introduced by Littlestone [10,11] as linear learners
that separate (winnow) relevant from irrelevant attributes. Winnow was designed

Evidence that Incremental Delta-Bar-Delta 137

to efficiently learn monotone (non-negative) disjunctions and r-of-k threshold
functions, and many of its proofs and applications have been in those domains.

There are a number of variations of Winnow, optimized for different domains
and with varying notation. The Winnow2 version of the algorithm, shown below,
is typically initialized with all weights set to 1 or 1

n . The threshold is often set
to n, giving a ratio of threshold to initial weights of n : 1 or n2 : 1.

wi ←




wiα
xi if p = −1 ∧ � = 1,

wi(1/α)xi if p = 1 ∧ � = −1,
wi otherwise,

(2)

where xi ∈ {0, 1}. The Balanced Winnow variation learns non-monotone
functions.

Winnow works by forcing weights on irrelevant features towards zero expo-
nentially quickly for false positives, and by raising weights on relevant features
exponentially quickly for false negatives. The use of a multiplicative rather than
additive update rule means that fewer changes are needed for convergence.

The mistake bounds for the Winnow and Perceptron algorithms have been
closely compared [8]. When learning monotone disjunctions of r literals, Win-
now makes no more than O(r logn) mistakes, where n is the total number of
attributes, and is thus attribute-efficient. In contrast, when learning the same
class of functions, the Perceptron learning rule makes a nearly linear (in n)
number of mistakes. If n is much larger than r, then Winnow performs much
better, while if n is not much larger then r, the Perceptron algorithm does better,
particularly if few features are active (non-zero) at any one time.

2.3 IDBD

Sutton’s IDBD (Incremental Delta-Bar-Delta) algorithm [14] is a variation on
Jacobs’ Delta-Bar-Delta algorithm [6]. Delta-Bar-Delta, in turn, is a variation
on the LMS learning rule (and also on backpropagation) that includes heuristics
designed to speed up learning, most notably the inclusion of per-weight learning
rates. The incremental version, IDBD, is additionally suitable for on-line learn-
ing and for learning non-stationary concepts. (Unlike DBD, IDBD is restricted
to learning weights for linear units, and no backpropagation variant has appar-
ently been derived. Note also that IDBD was originally derived to learn linear
functions, with real-valued inputs and non-thresholded outputs, but I am using
it here to learn weights for a linear-threshold unit and Boolean inputs.) As shown
below, the particular way that IDBD accelerates learning seems to put it in the
same category of attribute-efficient learning algorithms as Winnow.

IDBD uses an additive weight update rule with a per-unit modifiable learning
rate, rather than a shared, fixed learning rate as in the Perceptron rule. The
algorithm can be seen to be performing gradient descent in learning-rate space,
as well as in weight-space [14]. Intuitively, if a weight repeatedly changes in
the same direction, then the learning rate is increased, since this input’s weight
appears not to have converged (it is either too high or too low). If the weight

138 Harlan D. Harris

changes appear to be random, then the learning rate is decreased, since this
input’s weight appears to have converged, and the weight is oscillating around
the correct value. The update rules are as follows:

βi = βi + θhixi(�− p) (3)

ηi = eβi (4)
wi = wi + ηixi(�− p) (5)

hi = hi[1− ηix
2
i]

+ + ηixi(�− p) (6)

Note the per-input learning rate, ηi, in equation 5. Also, observe that β is
updated using the Perceptron rule, using θ as a learning rate, with the addition
of hi, which represents the recent summed history of the weight’s changes. The
[·]+ notation is equivalent to max(·, 0). An interesting aspect of IDBD is that its
update rules are defined recursively; β depends on h, which depends on β via η.

Sutton [14] gives experimental results showing that IDBD has lower cumu-
lative error on a simple non-stationary tracking task (where the concept peri-
odically changes) than does the LMS rule, is able to distinguish relevant from
irrelevant inputs, and weights those inputs approximately optimally. However,
he does not address the issue of attribute-efficiency, and no further theoretical
or empirical examination of IDBD has been performed to my knowledge.

3 Experiments

In this section I present new experimental evidence that compares IDBD to
Winnow and the Perceptron algorithm. Experiment 1 tests these algorithms
on the l-of-m-of-n threshold function, and shows that IDBD usually performs
comparably to Winnow, and much better than the Perceptron learning rule,
when learning disjunctive concepts with many irrelevant attributes. Experiment
2 systematically varies the complexity parameter n, with results suggesting that
IDBD’s mistake bounds grow logarithmically, like Winnow, and unlike the Per-
ceptron algorithm. Experiment 2b uses the same domain to illustrate IDBD’s
low need for parameter tuning. Experiment 3 then looks at learning of random
linear functions with few irrelevant attributes, and shows that IDBD performs
well even in circumstances when Winnow does poorly, which reinforces the idea
that IDBD is not merely a reimplementation of Winnow. (In an earlier exper-
iment, IDBD was shown to be useful for learning complex DNF concepts with
incomplete expanded feature spaces [5].)

For all results reported below, 10 replications were performed with different
random number seeds used to generate the data, and the results were averaged.
Initial weights for all three algorithms were set to 1

n , and the thresholds were n
2 .

Evidence that Incremental Delta-Bar-Delta 139

1 10 25 50 75 100

Number of Required Active Attributes (l)

0

200

400

600

800

1000

C
um

ul
at

iv
e

E
rr

or
s

Perceptron
Winnow
IDBD

Fig. 1. Cumulative errors after 10,000 examples in an l-of-100-of-1000 learning
task. Mean of ten replications, with 95% confidence intervals. Winnow performs
best when l = 1 (disjunction) or l = 100 (conjunction), but IDBD performs
similarly or better for intermediate values of l

3.1 Experiment 1: Comparing IDBD to Winnow with Irrelevant
Attributes

This experiment was designed to compare IDBD to Winnow and the Perceptron
algorithm on a task covered by the theoretical results of Kivinen et al. [8]. When
learning a concept where the Perceptron rule should make a nearly linear (in
irrelevant attributes) number of errors, and Winnow should make a logarithmic
(in irrelevant attributes) number of errors, how does IDBD empirically perform?

To test this, the algorithms were compared on l-of-m-of-n Boolean concepts.
These concepts are defined so that if l or more of the first m attributes are set to
1, the example is positive, and if fewer than l of the first m attributes are set to 1,
the example is negative. Data was generated as follows. Each input vector was of
width n. The first m attributes were considered “relevant,” while the remaining
n−m attributes were “irrelevant,” and were set to 1 with a probability of 0.25.
The examples were half positive and half negative. For positive examples, a
number r in the interval [l, m] was chosen, while for negative examples, r was in
the interval [0, l − 1]. Then, r attributes in the first m were randomly selected
and were set to 1, with the other relevant attributes set to 0. 10,000 examples
were generated and presented to the algorithms.

Based on pilot experiments, the learning rates of the Perceptron rule (η) and
IDBD (θ) were set to 0.1, and the learning rate of Winnow (α) was set to 1.1.

140 Harlan D. Harris

Table 1. Error rate in final 1000 examples of an l-of-100-of-1000 learning task.
Mean of ten replications

1 10 25 50 75 100

Perceptron 6.8 5.0 3.8 3.0 2.9 4.8
Winnow 1.6 1.0 1.1 1.4 2.6 0.0

IDBD 4.1 2.7 2.1 1.7 2.1 3.2

Moderate changes to these rates do not qualitatively change the results (see also
Experiment 2b).

Each algorithm was run with various values of l, with m = 100 and n = 1000.
The number of errors after presentation of 10,000 examples is shown in Figure 1.
The error rate for the last 1000 examples is shown in Table 3.1. IDBD performed
uniformly much better than Perceptron, with fewer cumulative errors and lower
final error rates. Compared to Winnow, IDBD usually made a similar number
of cumulative errors, but often with a somewhat higher residual error rate.

3.2 Experiment 2: Showing Attribute-Efficient Learning by IDBD

The theoretical results predict that as n grows, the Perceptron algorithm should
make errors that increase nearly linearly, while Winnow’s mistakes should in-
crease only logarithmically. If IDBD is attribute-efficient, its results should be
similar to Winnow’s.

To test this, l and m were set to 10 and 100, respectively, and n was varied
between 100 and 1000. Instead of running for a fixed number of examples, each
trial was terminated when 200 examples in a row were classified correctly (i.e.,
the concept had been effectively learned). The learning rates for the Perceptron
rule (η), IDBD (θ), and Winnow (α) were set to 0.8, 0.1, and 1.4, respectively
(see below). This test shows precisely how well each algorithm scales up with
irrelevant attributes, and should illustrate the theoretical predictions discussed
above.

The results are shown in Figure 2. The Perceptron algorithm, as expected,
did much more poorly than Winnow, and its mistake measures increased sharply
with n. Winnow made only slightly more errors as n increased, and the curve
appears logarithmic.

Most interestingly, IDBD shares Winnow’s property of making few additional
errors as n increases. Like Winnow, IDBD’s attribute-efficiency curve seems log-
arithmic, and is qualitatively different from the Perceptron algorithm. These re-
sults strongly suggest that IDBD shares the irrelevant-attribute-efficiency that
Winnow is know for.

Evidence that Incremental Delta-Bar-Delta 141

200 400 600 800 1000

Total Attributes (100 Relevant)

0

250

500

750

C
um

ul
at

iv
e

E
rr

or
s

Perceptron
Winnow
IDBD

Fig. 2. Cumulative errors at convergence (200 correct predictions in a row) for
a 10-of-100-of-n learning task. Mean of ten replications, with 95% confidence
intervals. IDBD and Winnow show attribute efficiency, unlike the Perceptron
algorithm

3.3 Experiment 2b: Showing IDBD Is Relatively Insensitive
to Its Parameters

To more carefully explore the strengths and weaknesses of these algorithms, and
to replicate one of Sutton’s conclusions about IDBD [14], the same domain was
used for an exploration of the learning rate parameter space. As before, the
target concepts are 10-of-100-of-n threshold functions. The learning rates tested
were 0.001, 0.01, 0.05, 0.1, 0.2, 0.4, and 0.8. (For Winnow, α was set to 1 plus the
above numbers.) The variable n took the values 100, 500, and 1000. As before,
10 replications were performed, and the cumulative errors before convergence
(200 correct predictions in a row) were counted.

The results are shown in Table 3.3. Clearly, the IDBD algorithm was rela-
tively insensitive to small values of the learning rate, as compared with Winnow
and the Perceptron algorithm. However, it was susceptible to convergence failure
when the learning rate was very high. Again, note the sharp increase in errors
between n = 500 and n = 1000 for the Perceptron algorithm, compared to the
small increases for Winnow and IDBD.

142 Harlan D. Harris

3.4 Experiment 3: Showing IDBD Does Well when Winnow Does
Poorly

The same theoretical results that predict that Winnow should learn with fewer
mistakes when irrelevant attributes are predominant also predict that the Per-
ceptron learning rule should learn with fewer mistakes when all (or nearly all)
attributes are relevant. In addition, since Winnow is optimized for disjunctions,
it’s reasonable to expect that it will do relatively poorly when learning arbitrary
weights. By virtue of its fixed, multiplicative weight update rule, Winnow may
find it difficult to set weights with the precision needed for arbitrary, small-
margin concepts. Weights can oscillate around a target value, their step size too
large to approach it. To test this intuition, the three algorithms were compared
on randomly-generated linear threshold functions. These functions are of the
form c(x) = w̃ · x, where the elements of w̃ were randomly generated, indepen-
dent real-valued numbers.

The data was generated as follows. For each concept, target weights were
selected from a uniform distribution over the interval [0, 10]. Then, 20,000 ex-
amples of each concept were generated by randomly setting Boolean inputs with
probability 0.5, multiplying by the target concept’s weights, and comparing the
result to a threshold equal to the expected value, 10 ∗ n

4 . Approximately half
of the resulting examples were thus positive, and half were negative. Note that
weights near 10 are maximally relevant, while those near zero are essentially
irrelevant. Unlike the previous experiments, there is a continuum of relevance,
with nearly all weights being somewhat relevant to the target concept.

In this experiment, we used learning rates of 0.01 for the Perceptron rule, 0.2
for IDBD, and 1.01 for Winnow, based on informal pilot experiments.

The results, for n = 200 (other values of n were similar), can be seen in Fig-
ure 3. As expected, the Perceptron algorithm performed better than Winnow.

Table 2. Cumulative errors to convergence on a 10-of-100-of-n task, varying
learning rates. Bold represent the parameter that results in the lowest error
count at n = 1000. NC means that the algorithm did not always converge even
after 100,000 examples

Alg. n .001 .01 .05 .1 .2 .4 .8

Percep. 100 11645 1671 382 216 115 63 37
500 12495 2889 1215 823 434 413 330
1000 14608 4800 1415 1018 635 562 550

Winnow 100 15145 1667 358 190 115 107 192
500 20442 2126 445 240 153 132 278
1000 22762 2390 502 261 185 164 480

IDBD 100 380 365 289 223 171 118 180
500 1185 910 421 358 211 NC NC
1000 1374 1097 553 352 NC NC NC

Evidence that Incremental Delta-Bar-Delta 143

The IDBD algorithm showed performance similar to, and slightly but signifi-
cantly better than, that of the Perceptron learning rule for this domain.

4 Discussion

These empirical results suggest that IDBD is an attribute-efficient learner, with
a logarithmic attribute-efficiency curve. IDBD makes mistakes at rates only
somewhat higher than Winnow when irrelevant attributes are plentiful, but
significantly lower than Winnow when all attributes are relevant. By being
both attribute-efficient and flexible, IDBD should be particularly useful when
the number of irrelevant attributes is unknown prior to learning. For example,
robotic multi-modal sensory systems, computational linguistic applications [12],
and neurological modeling applications [5,15] often naturally have extensive ir-
relevant attributes and expanded feature spaces.

Other linear learning systems with attribute-efficient properties have been
mentioned in the literature. The p-norm family of Generalized Perceptron1 al-
gorithms [4] is able to approximate the Perceptron and Winnow algorithms by
choices of the p parameter. For a sufficiently large p, the p-norm algorithm is
known to be attribute-efficient. The ALMAp algorithm [3] combines a p-norm-
like computation with a decaying learning rate, a specifiable margin, and nor-
1 The Generalized Perceptron defines Quasi-Additive algorithms defined by a vector z,
updated exactly like the Perceptron, and a function f(z) = w specifying the weight
vector as a function of z. The Perceptron, Balanced Winnow, and p-norm algorithms
may be defined by f(z) = z, sinh(z), and sign(z)p|z|p−1, respectively.

0 5000 10000 15000 20000

Examples

0

500

1000

1500

2000

2500

3000

C
um

ul
at

iv
e

E
rr

or
s

Perceptron
IDBD
Winnow

Fig. 3. Cumulative errors on 200-attribute random linear threshold concepts.
Average of ten replications, with 95% confidence intervals

144 Harlan D. Harris

malized weight vectors. Although it has not been shown to be attribute-efficient,
it seems likely to be so.

IDBD has similarities with these two algorithms, but differences and advan-
tages as well. Like p-norm and Winnow, and unlike ALMAp, IDBD’s weights
are unbounded, and by having increasing learning rates2, can grow exponentially
fast. Like ALMAp, but unlike p-norm and Winnow, IDBD uses adjustable learn-
ing rates which decrease as the learner converges. However, IDBD has per-weight
learning rates, while ALMAp has only a single dynamic learning rate.

A practical advantage in real-world learning situations is that IDBD has
only a single parameter, the learning rate θ, compared to p-norm with two and
ALMAp with three. (IDBD has more variables requiring initial conditions, how-
ever.) IDBD is relatively insensitive to the settings of its learning rate parame-
ter [14], allowing IDBD to be used with more confidence given less knowledge of
the target concept than other algorithms. A final advantage is that IDBD was de-
signed to be capable of learning drifting concepts, while other attribute-efficient
learners may deal poorly with concept change. (But see [1] for a variation on
Winnow which does learn drifting concepts well.)

4.1 Analytical Support

Several analytical approaches can be used to complement the empirically-sup-
ported assertion that IDBD is attribute-efficient. In this section, I investigate
the relative speed of weight changes in various algorithms, and argue that expo-
nential weight increases are sufficient for attribute-efficiency. Then, I show that
a variation of IDBD is very similar to the Generalized Perceptron formulation
of an algorithm that is known to be attribute-efficient.

IDBD’s attribute-efficiency seems to be due to the algorithm’s ability to
increase weights exponentially fast on relevant attributes, relative to the other
weights. With exponentially fast increases, relevant weights outweigh irrelevant
weights quickly enough that a number of errors only logarithmic in the number
of irrelevant weights need be made [10]. Consider a simple case of the weight
on a relevant Boolean input, where the learner makes repeated false negative
predictions. That is, for simplicity, let x = 1 and � − p = 1 (actually = 2, but
we can use 1 by doubling the learning rate). How does w change over time?

For the Perceptron algorithm in this case, w← w+ η, and w(n) =
∑n

i=1 η =
O(n). The Perceptron algorithm only increases weights linearly quickly, and it
is not attribute-efficient.

For Winnow under these assumptions, w ← αw, and w(n) = w(0)αn =
O(αn). Clearly, Winnow increases weights exponentially quickly, and it is attri-
bute-efficient.

Before examining IDBD, let’s first examine a simple second-order gradient-
descent relative, in which η = β and h = 1. Then, (using T instead of θ so as
not to be confused with the θ(·) of asymptotic notation) we have β ← β + T

2 Winnow can be rewritten as an additive learning rule with a per-weight learning
rate that is equal to a function of the weight itself.

Evidence that Incremental Delta-Bar-Delta 145

Table 3. IDBD-h algorithm

prediction label update

1 -1 if xi = 1, wi ← wi − ezi , demotion
zi ← zi − η

-1 1 if xi = 1, zi ← zi + η promotion
wi ← wi + ezi ,

and w ← w + β. Therefore, β(n) =
∑n

i=1 T = O(n), and w(n) =
∑n

i=1 β(n) =∑n
i=1

∑n
j=1 T = O(n2). This algorithm does not grow weights exponentially, and

thus could not be expected to show the logarithmic attribute-efficient behavior
of Winnow3.

Adding η = eβ back to IDBD, but keeping h = 1, we now have that w ←
w + eβ , and w(n) =

∑n
i=1 eO(n) = O(en). This algorithm, without the decaying

sum of recent weight changes, can increase weights exponentially, and thus should
be attribute-efficient. It is rather similar to Winnow, in that the effective learning
rate is related to all previous weight changes.

Re-adding the h of equation 6 to complete IDBD results in an attribute-
efficient algorithm that modulates the exponential in the exponentially-increas-
ing learning rate by the extent to which the recent weight changes have been in
the same direction. The result is more flexible than Winnow, yet still appears
attribute-efficient.

With some modifications, IDBD can be shown to be similar to the Weighted
Majority algorithm [11,9]. To see this, first modify IDBD by separating the
promotion (false negative) and demotion (false positive) cases, as in the original
presentation of Winnow [10]. Then, let hi = 1 as above, and assume that xi ∈
{0, 1}. We then have the algorithm shown in Table 3, which I’ll call IDBD-h.
Note that by reversing the order of wi and zi updates in demotions, that a
sequence of promotions and demotions can be re-ordered arbitrarily and will
result in the same final weight vectors.

Assuming the initial values of z and w are zero, the weight vector w can be
written as a function of the current value of z: wi =

∑zi/η
i=1 eiη = eη

eη−1 (e
zi − 1).

Note that the ratio is a constant, and thus can be shifted to the bias weight, if
their is one, or ignored otherwise. We therefore have a Generalized Perceptron
with f(z) = ez − 1. This is very similar to the Weighted Majority algorithm [9],
which can be defined as a G.P. with f(z) = ez (plus simple transformations of the
input representation and learning rate)[4]. Clearly, the IDBD-h algorithm should
have mistake bounds that are similar to those of the attribute-efficient (see [11])
Weighted Majority. Unfortunately, direct analysis of IDBD-h has so far failed,
as the methods for finding mistake bounds for Generalized Perceptron can’t be
easily applied to the f(z) above, and other approaches have yet to be successful.

3 It’s interesting to consider whether this algorithm might have O(
√

n) mistake
bounds. In fact, work in progress shows that a closely related algorithm does.

146 Harlan D. Harris

However, this analysis on a simplified version of IDBD further provides evidence
for the notion of IDBD’s attribute-efficiency.

4.2 Conclusions

This paper has provided an empirical basis for believing that the IDBD algo-
rithm has attribute-efficient properties. In addition, it was shown that IDBD has
strengths relative to more traditional attribute-efficient learners such as Winnow,
and that analytical approaches to establishing IDBD’s attribute efficiency show
promise. Future work will analytically explore the space of attribute-efficient
linear learners, including IDBD and related algorithms. By more clearly iden-
tifying the relationships between attribute-efficient algorithms, and by defining
the functional features of each, it will become easier to explain experimental
results, and to apply these algorithms to real-world problems.

Acknowledgments

I wish to thank Dan Roth, Gary Dell, Jerry DeJong, Sylvian Ray, Jesse Reichler,
Dav Zimak, Ashutosh Garg, and several anonymous reviewers for their helpful
suggestions on this and earlier versions of this paper. This work was in part
supported by NSF grant SBR-98-73450 and NIH grant DC-00191.

References

1. P. Auer and M. K. Warmuth. Tracking the best disjunction. Machine Learning,
32:127–150, 1998. 144

2. N. Christiani and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000. 136

3. Claudio Gentile. A new approximate maximial margin classification algorithm.
Journal of Machine Learning Research, 2:213–242, December 2001. 143

4. Adam J. Grove, Nick Littlestone, and Dale Schurrmans. General convegence results
for linear discriminant updates. Machine Learning, 43(3):173–210, 2001. 143, 145

5. Harlan D. Harris and Jesse A. Reichler. Learning in the cerebellum with sparse
conjunctions and linear separator algorithms. In Proceedings of the International
Joint Conference on Neural Networks 2001, 2001. 136, 138, 143

6. Robert A. Jacobs. Increased rates of convergence through learning rate adaptation.
Neural Networks, 1:295–307, 1988. 137

7. Roni Khardon, Dan Roth, and Rocco Servedio. Efficiency versus convergence of
boolean kernels for on-line learning algorithms. In Proceedings of Neural Informa-
tion Processing Systems 2001, 2001. 135, 136

8. J. Kivinen, M. K. Warmuth, and P. Auer. The Perceptron algorithm versus Win-
now: Linear versus logarithmic mistake bounds when few input variables are rele-
vant. Artificial Intelligence, 97:325–343, 1997. 135, 137, 139

9. N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information
and Computation, 108:212–261, 1994. 145

10. Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988. 135, 136, 144, 145

Evidence that Incremental Delta-Bar-Delta 147

11. Nick Littlestone. Mistake bounds and logarithmic linear-threshold learning algo-
rithms. PhD thesis, University of California, Santa Cruz, Technical Report UCSC-
CRL-89-11, March 1989. 135, 136, 145

12. Dan Roth. Learning to resolve natural language ambiguities: A unified approach.
In Proceedings of AAAI-98, 15th Conference of the American Association for Ar-
tificial Intelligence, pages 806–813, 1998. 135, 136, 143

13. Nicolas Schweighofer and Michael A. Arbib. A model of cerebellar metaplasticity.
Learning and Memory, 4:421–428, 1998. 136

14. Richard S. Sutton. Adapting bias by gradient descent: An incremental version of
Delta-Bar-Delta. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 171–176. MIT Press, 1992. 135, 137, 138, 141, 144

15. Leslie G. Valiant. Projection learning. Machine Learning, 37:115–130, 1999. 136,
143

	Evidence that Incremental Delta-Bar-Delta Is an Attribute-Efficient Linear Learner
	Introduction
	Algorithms
	Perceptron Learning Rule
	Winnow
	IDBD

	Experiments
	Experiment 1: Comparing IDBD to Winnow with Irrelevant Attributes
	Experiment 2: Showing Attribute-Efficient Learning by IDBD
	Experiment 2b: Showing IDBD Is Relatively Insensitive to Its Parameters
	Experiment 3: Showing IDBD Does Well when Winnow Does Poorly

	Discussion
	Analytical Support
	Conclusions

	Acknowledgments
	References

