Learning and Inference for Clause Identification

Xavier Carreras!***, Lluis Marquez® **,

Vasin Punyakanok?***, and Dan Roth? ***

! TALP Research Center — LSI Department
Universitat Politecnica de Catalunya
{carreras,lluism}@lsi.upc.es
2 Department of Computer Science
University of Illinois at Urbana-Champaign
{punyakan,danr}@cs.uiuc.edu

Abstract. This paper presents an approach to partial parsing of natural
language sentences that makes global inference on top of the outcome of
hierarchically learned local classifiers. The best decomposition of a sen-
tence into clauses is chosen using a dynamic programming based scheme
that takes into account previously identified partial solutions. This infer-
ence scheme applies learning at several levels—when identifying potential
clauses and when scoring partial solutions. The classifiers are trained in
a hierarchical fashion, building on previous classifications. The method
presented significantly outperforms the best methods known so far for
clause identification.

1 Introduction

Partial parsing is studied as an alternative to full-sentence parsing. Rather than
producing a complete analysis of sentences, the alternative is to perform only
partial analysis of the syntactic structures in a text [6,1,5]. There are several
possible levels of partial parsing—from the identification of base noun phrases[9]
to the identification of several kinds of “chunks” [1,12] and to the identification
of embedded clauses [1].

While earlier work in this direction concentrated on manual construction of
rules, most of the recent work has been motivated by the observation that partial
syntactic information can be extracted using local information—by examining
the pattern itself, its nearby context and the local part-of-speech information.
Thus, over the past few years there has been a lot of work on using statistical
learning methods to recognize partial parsing patterns—syntactic phrases or
words that participate in a syntactic relationship [9,7,8,2,12,3]. Earlier learning
works on partial parsing have used mostly local classifiers; each detects the

* Supported by a grant from the Catalan Research Department.
** This research is partially funded by the Spanish Research Department (TIC2000-
0335-C03-02, TIC2000-1735-C02-02) and the EC (NAMIC IST-1999-12392).
*** Supported by NSF grants IIS-99-84168,ITR-IIS-00-85836 and an ONR MURI
award.

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 35-47, 2002.
© Springer-Verlag Berlin Heidelberg 2002

36 Xavier Carreras et al.

beginning or end of a phrase of some type (noun phrase, verb phrase, etc.)
or determines, for each word in the sentence, whether it belongs to a phrase
or not. Recent work on this problem has achieved significant improvement by
using global inference methods to combine the outcomes of these classifiers in
a way that provides a coherent inference that satisfies some global constraints,
for example, non-overlapping constraints [3,7]. The work presented here can
be viewed as an extension of this approach to a more involved partial parsing
problem.

In this paper we study a deeper level of partial parsing, that of clause iden-
tification. A clause is a sequence of words in a sentence that contains a subject
and a predicate [13]. The problem is to split a sentence into clauses, as in,

(Coach them in (handling complaints) (so that (they can
resolve problems immediately)).)

This problem has been found more difficult than simply detecting non-overlap-
ping phrases in sentences [13]. Existing approaches to it use a large number of
local classifiers to determine the beginning and end of clauses, as well as the
embedding level of the clause.

The work presented here builds on the success of a phrase identification
approach that uses inference on top of learned classifier; it develops a scheme that
allows the use of global information to combine local classifiers for the finer and
more difficult task of identifying embedded clauses. The approach is related also
to methods used in bottom-up parsing methods [1]. The key difference is that,
as in the inference with classifiers approach in [8], all the information sources
used in the inference are derived from hierarchical classifiers that are applied
within a recursive scheme. Specifically, the best decomposition of a sentence
into clauses is chosen using a dynamic programming scheme that takes into
account previously identified partial solutions. This scheme applies learning at
several levels, when identifying beginnings and ends of potential clauses and
when scoring partial solutions. The classifiers are trained from annotated data
in a hierarchical fashion, built on previous classifications.

This work develops a general framework for clause identification that, while
being more complex than previous approaches, is derived in a principled way,
based on a clear formalism. In particular, the inference scheme can take several
scoring functions that could be derived in different ways and make use of different
information sources. We exemplify this by experimenting using three different
scoring functions.

2 Clause Identification

Basic Definitions. Let w; be the i-th word in a sentence. Let w! denote the sen-
tence fragment or sequence of words ws, ws1, ..., wy and, in particular, let w}
represent a sentence. In this paper we do not consider clause types. In this
setting, thus, a clause ¢ is an element of the set C = {(ws, wy)|1 < s <t < n}.
For brevity, from now on we will denote a clause simply using the indices of

Learning and Inference for Clause Identification 37

the words of the sentence, and therefore a clause will be an element of the set
C={(s,t)]1 <s<t<n}. Given two clauses ¢; = (s1,t1) and ¢y = (s2,t2), we
say that ¢; and co are equal, denoted by ¢; = co, iff 57 = s2 and t; = t5. We define
that ¢; and ¢y overlap iff s1 < s9 < t1 < to or s9 < 81 < ty < t1, and we note it
as ¢ ~ ¢o. Furthermore, we define that ¢; is embedded in ¢ iff 55 < 51 < t1 <ty
and ¢; # co, and we note it as ¢; < ca. A clause split for a sentence is a co-
herent set of clauses of the sentence, that is, a subset of C whose clauses do
not overlap. Formally, a clause split can be seen as an element S of the set
S = {S §C|V61,CQ € S,Cl 76 CQ}.

We will refer to a clause without any embedded clause as a base clause, and
to a clause which embeds other clauses as a recursive clause.

Goal and Evaluation Metrics. The goal of the clause identification problem is to
predict a clause split S* for a sentence which “guesses” the correct split S for
the sentence. For evaluating the task in a set of IV sentences, the usual precision

(P), recall (R) and Fjg=1 measures are used: (| - |: number of elements in set.)
S lSPnsP _ELIsEnsf o 2PR
e - —_— B=1 e ——
SIS S IS7] PR

Clause Identification in a Language Processor. A clause splitter is intended to
be used after a part-of-speech (POS) tagger and a chunk parser. POS tags are the
syntactic categories of words. Chunks are sequences of consecutive words in the
sentence which form the basic syntactic phrases, subject to the constraints that
chunks cannot overlap or have embedded chunks. In the example

([Balcor] NP , ([which] NP ([has]_VP [interests] NP [in]_PP
[real estate] NP)) , [said] VP ([the position] NP [is newly
created] VP) .)

the chunks are annotated together with its type between square brackets, while
the clause split is annotated with parentheses. In a correct syntactic tree, clause
boundaries are always at some chunk boundaries. However, in a real system
chunk boundaries may be imperfect, so our formalization allows the violation of
this constraint.

3 Inference Scheme

The decision scheme used for splitting a sentence into clauses includes two main
tasks: 1) identifying single clauses in the sentence, that is, building the set C; and
2) selecting the clauses which form the optimal coherent split, that is, choosing
the best element S in S.

3.1 Identifying Clauses

The identification of clauses is done in two steps: the first, identifies candidate
clauses in the sentence and the second, scores each candidate. We define an S

38 Xavier Carreras et al.

point of the sentence as a word at which clauses may start, and similarly we
define an E point of the sentence as a word at which clauses may end. The
first step consists of two functions, spoint (w) and epoint (w) which, given a
word w, decide whether it is an S point and an E point, respectively. Each pair
of S and E points, where E is not before S, is considered a clause candidate of
the sentence. The S and E identification step reduces the space of clauses to be
combined to form the solution, as a way to make the problem computationally
feasible.

The second step scores each clause candidate of the sentence. This consists of
a function score(s,t) which, given a clause candidate (s, t), outputs a real num-
ber. Its sign is interpreted as an indication of whether the candidate is a clause
(positive) or not; the magnitude of the score is interpreted as the confidence of
the decision.

3.2 Selecting the Clause Split

Given a set of scored clauses in the sentence, a coherent subset S must be selected
as the clause split for the sentence. Our criterion of optimality for a clause split
is the maximization of the summation of the scores of the clauses in the split:

St = :
arg max Z score(s,t)
(s,6)€S

Given a matrix BESTSPLIT[s,t] that for each pair of words w, and w; stores
the best split found in w!, the best split for the whole sentence can be found
at BESTSPLIT[1,n]. Using dynamic programming, the matrix can efficiently be
filled by exploring the sentence bottom-up.

3.3 A General Algorithm

Although we have described the whole process as two separate tasks, we want
to perform them together. The main reason is that when a clause candidate is
considered, we want to take advantage of the clause structure that is possibly
embedded inside the candidate. The idea is that, syntactically, a clause ¢; acts as
an atomic constituent inside a clause ¢ which embeds ¢; so that, when consider-
ing co, all the constituents which form ¢; can be reduced to a single constituent,
making the structure of ¢y simpler (which may affect the scoring function).

The general algorithm is presented in Fig.1 as a recursive function. Two bi-
dimensional matrices are maintained: BESTSPLIT[s,t] stores the optimal split
found in w!; SCORE][s,t] stores the score for the clause candidate (s,t). The call
to the function optimal_clause_split(1,n) explores the whole sentence and
stores the optimal clause split for the sentence in BESTSPLIT[1,n].

The first block of the function ensures the completeness of the exploration
by making two recursive calls on the sentence fragments, one without the word
at the end and the other without the word at the beginning. By induction, after
the recursive calls all the clause splits inside the current sentence fragment are

Learning and Inference for Clause Identification 39

function optimal_clause_split (s, %)
if (s#1t) then
optimal_clause_split(s, ¢t — 1)
optimal_clause_split(s + 1, t¢)
m := {BESTSPLIT[s,r| UBESTSPLIT[r + 1,t]|s <1 < t}
S = argmaxser), ;)5 SCORE[K,]
if (spoint(s) and epoint(t)) then
SCORE[s,t] := score(s,t)
if (Scorg[s,t] > 0) then
S* = ST UA{(s, 1)}
BESTSPLIT[s,t] := S*
end function

Fig. 1. General algorithm for clause splitting

identified. The second block of the function computes the optimal split for the
current sentence fragment. First, the optimal split is selected as the best union
of two disjoint splits which cover the whole fragment. Then, the clause candidate
for the current fragment is considered. If the score function classifies the current
clause as positive, it is added to the optimal split. In the next section we will
discuss several settings for this function.

The solution given by the algorithm is guaranteed to be coherent by cons-
truction. A clause split is constructed by joining two disjoint clause splits, and
only a clause which embeds all the clauses in the split may be added.

Note that the algorithm, as described in Fig.1, repeats recursive calls. This
recalculation is not needed and can be easily avoided by keeping track of the
visited sentence fragments. It can also be noticed that a function call is relevant
only if the fragment considered is bounded by an S point and an E point, and the
algorithm can be adapted for avoiding unnecessary calls. In general, a sentence
requires a function call for each clause candidate and there is a quadratic number
of clause candidates over the n words in the sentence. The function requires a lin-
ear time for selecting the optimal split plus the cost of the scoring function. Thus,
identifying a clause split in a sentence will take time O(n?(n + cost(score))).

3.4 Scoring Functions

In this section we describe particular settings of the function score. Given a
clause candidate, this function has to predict a score for the candidate being a
clause in the sentence. It is defined as a composition of classifiers, each of which,
given a clause candidate, output a real number that encodes its prediction (sign)
and confidence (magnitude). Below we define such classifiers, and in Sect.4 we
describe the learning process. Let (s,t) be the clause candidate to be scored.
The variants are the following:

40 Xavier Carreras et al.

Plain Scoring. The clause structure is not considered. A clause is scored by a
classifier, which we refer to as plain, which recognizes clauses as plain structures.
This scoring function is independent of the decision taken inside.

score(s,t) = plain(s,t)

The cost of this scoring function is the cost of the plain classifier.

Structured Scoring. In this setting, the score of a clause depends on its in-
ternal structure. This may require exploring all possible subclauses which, to
guarantee optimal solutions, may be exponentially expensive. We present here
two variations of scoring functions that provide some trade-off between the com-
putational cost and the global optimality.

Let 7 be the set computed by the algorithm in Fig.1, which contains a lin-
ear number of splits, and let S* be the optimal element in w. We define the
cascade function C(f1, f2,..., fn) as a function which returns f; if f; > 0 and
C(f2,-.., fn) otherwise, having C() = —1.

Best Split Scoring. The optimal split is considered for the scoring. The function
is composed of three classifiers. A base classifier recognizes base clauses, i.e.
clauses that do not embed other clauses. A rece classifier recognizes clauses
assuming that the complete split of clauses inside the candidate is given. Finally,
a recp classifier recognizes clauses assuming that only a partial split of clauses
is given. When no clause has been identified inside the candidate, the function
first applies the base classifier, and if it predicts FALSE, it applies the recp
classifier, assuming that initial clauses were missed. When a split is given, the
function cascades the three classifiers. The reco classifier may give an accurate
prediction if the split is correct and complete. If it predicts FALSE, the classifier
recp is applied, assuming that some clauses in the split were missed. If it also
predicts FALSE, the candidate is tested as a base clause, despite the identified
split. This function score depends both on the clauses identified inside and the
choice of the optimal split. It is designed to overcome misses in the given split,
but incorrect clauses in the split may damage the performance.

C(base(s,t),recp(s,t)) if S* =1

score(s,t) = {C(recc(s,t, S*),recp(s,t,S*),base(s,t)) otherwise

The computational complexity of this scoring function is the cost of the involved
classifiers.

Linear Average Scoring. All the splits in 7 are considered for scoring the candi-
date. The function uses the same classifiers as in the Best Split Scoring. The idea
here is that the confidence of a clause depends on all the clause structures that
can be embedded inside, not only on the optimal. Thus, the score of the clause
is given by the function avg® which computes the average only over the scores

Learning and Inference for Clause Identification 41

which give positive evidence. As in the previous function, incorrect clauses in
the splits may damage the performance.

C(base(s,t),recp(s,t)) ifr=10

score(s,t) = {C(avggeﬂC(TGCc(S’tvS)’TeCP(S’t7S))’ base(s,t)) otherwise

This scoring function requires linear exploration of the structure, and hence its
cost is n times the cost of the classifiers.

4 Learning the Decisions

Here we describe the learning process of the functions involved in the system.
When identifying candidates two classifiers are involved, spoint and epoint. The
scoring functions use up to four classifiers, namely plain, base, recc and recp.
We use AdaBoost with confidence rated predictions as the learning method.

4.1 AdaBoost

The purpose of boosting algorithms is to find a highly accurate classification
rule by combining many base classifiers. In this work we use the generalized
AdaBoost algorithm presented in [10] by Schapire and Singer. This algorithm
has been applied, with significant success, to a number of problems in different
research areas, including NLP tasks [11].

Let (z1,41),---, (Zm,Ym) be the set of m training examples, where each z;
belongs to an input space X and y; € Y = {+1,—1} is the corresponding class
label. AdaBoost learns a number T of base classifiers, each time presenting the
base learning algorithm a different weighting over the examples. A base classifier
is seen as a function i : X — R. The output of each h; is a real number whose sign
is interpreted as the predicted class, and whose magnitude is the confidence in the
prediction. The AdaBoost classifier is a weighted vote of the base classifiers, given
by the expression f(z) = Zthl athi(x), where «a; represents the weight of hy
inside the whole classifier. Again, the sign of f(x) is the class of the prediction
and the magnitude is its confidence.

The base classifiers we use are decision trees of fixed depth. The internal nodes
of a decision tree test the value of Boolean predicate (e.g. “the first word of a
clause candidate is that”). The leaves of a tree define a partition over the input
space X, and each leaf contains the prediction of the tree for the corresponding
part of X. We follow the criterion presented in [10] for growing base decision
trees and computing the predictions in the leaves. A maximum depth is used as
the stopping criterion.

4.2 Features

An entity to be classified is represented by a set of binary features encoding local
and global information in the entity. Features are grouped into several types:

42 Xavier Carreras et al.

Word Window. A word window of context size n anchored in the word w; encodes
the words in the fragment w;fz along with their position relative to the central
word. For each word in the window, its POS forms a feature. For words whose
POS are determiners, conjunctions, pronouns or verbs, the form is also a feature.
When considered and available, features will also encode whether the words are

S or E points.

Chunk Window. A chunk window of context size n anchored in the word w;
codifies the chunk containing the word w;, the previous n chunks and the follow-
ing n chunks. For each chunk in the window, a feature is formed with the chunk
tag and the distance to the central chunk.

Patterns. A pattern represents the structure of a sentence fragment which is
relevant for distinguishing clauses. The following elements are considered: a)
Punctuation marks (>, <, (,), ,, ., :) and coordinate conjunctions; b) The
word “that”; c) Relative pronouns; d) Verb phrases chunks; and e) CLAUSE
constituents, already recognized. A pattern for the fragment w is a feature
formed by concatenating the relevant elements inside the fragment.

Element Counts. Number of occurrences of relevant elements in a sentence frag-
ment. Specifically, we consider the chunks which are verb phrases or relative
pronouns, the word that, and the words whose POS is a punctuation mark.
Given a sentence fragment, two features are generated for each element, one in-
dicating the count of the element and the other indicating the existence of the
element. If a clause split is given, elements inside clauses will not be counted.

4.3 Training the Classifiers

Classifiers in the decision scheme are used dynamically. Here we describe how to
generate a static set of examples from a given set of annotated sentences.

For the S and E identification, each word in the sentence produces an exam-
ple to be classified. Since clause boundaries, by definition, only appear at chunk
boundaries, we consider only the words at the beginning of a chunk as examples
for the spoint classifier and the words at the end of a chunk as examples for the
epoint classifier. Consistently, when labeling, the words between chunk bound-
aries are never considered S or E points. The system works from left to right, by
first using the S predictor for the whole sentence and then the E. An example
at a word is represented with word and chunk windows, considering the S and
E already predicted, and a pattern and counts features for the fragments of the
sentence before and after the word.

The classifiers in the scoring function receive clause candidates as examples
to be classified. The candidates are generated by the S and E identification so,
clearly, the classifiers of the scoring functions depend on the performance of the
S and E classifiers. In training, given a set of sentences, examples of candidates
are generated with the correct set of S and E points plus a set of incorrect points
which depends on the previously learned classifiers. Our criterion for selecting

Learning and Inference for Clause Identification 43

such incorrect points is to use negative examples which are closer to the decision
boundary of the spoint and epoint classifiers.

Given a set of candidates, we generate and typify training examples into four
positive labels (‘+1'—+4’) and two negative labels (‘-1’,'-2’) as follows:

— Each candidate which is a base clause generates one example of type ‘+1°.

— Each candidate which is a recursive clause generates: 1) one example of type
‘+2’, without considering its internal clause split; 2) one example of type
‘+3’, considering its complete clause split; and 3) k examples of type ‘+4’,
each considering one of the k partial splits formed by removing clauses from
the complete split for up to three levels deep.

— Each candidate which is not a clause generates: 1) one example of type
-1’, without considering any clauses inside; and 2) k examples of type ‘-2’
considering possible splits with the clauses inside the candidate generated as
in examples of type ‘44’

For training, the plain classifier takes positive examples of type ‘+1’ and
‘+2’, and negative examples of type ‘-1’. The base classifier takes ‘+1’ positive
examples and ‘-1’ negative examples. The reco takes ‘43’ for positives and ‘-2’
for negatives. Finally, the recp takes positive examples of type ‘+2’, ‘+3’ and
‘+4’, and negative examples of both types.

In these classifiers, a candidate is represented by word and chunk windows
anchored both in the S and E point of the candidate, a pattern codifying the
structure of the candidate and counts of the relevant elements in the candidate.
Note that when a clause split is considered within a candidate, clauses in the
split are represented in the pattern as reduced elements and elements inside the
clauses are not counted.

5 Experiments

In this section we describe the experiments we performed to evaluate the pre-
sented algorithm with its variations.

CoNLL 2001 Corpus. We used the Penn Treebank as data for training and test-
ing the clause system, following the setting of the CoNLL 2001 shared task [13].
WSJ sections from 15 to 18 were used as training material (8,936 sentences),
section 20 as development material (2,012 sentences), and 21 as test data (1,671
sentences).! The data sets contain sentences with the words, the clause split
solution, and automatically tagged POS tags and chunks.

Baseline: Open-Close. The best system presented in the CoNLL task, which we
call the Open-Close [3], is used as the baseline for comparison. The scheme it
follows first identifies the S and E points in a sentence. Then, an open classifier
decides how many open brackets correspond to each S point. After that, for

! Corpus freely available at http://lcg-www.iua.ac.be/con112001/clauses.

44 Xavier Carreras et al.

each open bracket a close classifier scores each E point as closing point for the
bracket. A final procedure ensures the coherence of the solution by choosing the
most confident decisions that form a correct split. The Open-Close scheme has a
close relation to the Plain Scoring approach presented in this work, in the sense
that the close and the plain classifiers score clause candidates in a similar way.

Training classifiers. All the classifiers involved in the scheme were trained using
base decision trees of depth 4 (four levels of predicates plus the leaves with the
predictions). Initial experiments showed a great improvement in using depths
around 4 rather than the usual decision stumps (depth 1). Only features with
more than three occurrences in the training data were considered. Up to 4,000
trees were learned for each classifier, and the optimal number was selected as
the one with the best Fjg—; measure on the development set.

FEvaluating the scoring functions. In the first experiment we compared the per-
formance of the three proposed scoring functions. The classifiers involved in
the functions were learned without considering incorrect S and E points in the
training set. Table 1 shows in the first three columns the results for each scoring
function on the development set, together with the results of the Open-Close.
The performance of the S and E points identification was 93.89% and 90.12%
in Fy, respectively.

Regarding the three results, the Best Split Scoring obtained the best rates.
The Plain Scoring obtained the same recall but less precision. Our hypothe-
sis is that considering reduced clauses simplifies the structures to be classified
and yields more precise predictions. The Linear Average Scoring is significantly
worse than the other variants. Thus, it seems that in this problem taking into
account the optimal identified structure helps the decisions, but further explo-
rations of non-optimal solutions confuses the decisions. Comparing to the best
results in CoNLL, both the Best Split and Plain Scoring variants significantly
outperformed the Open-Close method.

In order to show the bottleneck that the S and E identification introduced,
we ran the systems considering the correct S and E points instead of using the
predictions. The results are shown in the right side of Table 1. In this ideal
setting, the performance is very good, clearly indicating that errors in the S and

Table 1. Results on the development set. Overall performance of the presented
variants, using the predicted (left) or the correct (right) S and E points

predicted S E correct S E
prec. rec. Fg=1 prec. rec. Fp=1
Open-Close 87.18% 82.48% 84.77% |98.12% 96.16% 97.13%
Plain Scoring 88.33% 83.92% 86.07% | 95.04% 96.14% 95.59%
Best Split Scoring 89.10% 83.92% 86.44% | 96.74% 96.90% 96.82%
Linear Average Scoring | 87.60% 81.91% 84.66% |95.88% 95.74% 95.81%

[Robust Best Split Scoring|92.53% 82.48% 87.22%[97.47% 90.29% 93.74% |

Learning and Inference for Clause Identification 45

E layer significantly affect the general performance. The Best Split Scoring is
again better than the other scoring variants. Here Open-Close achieves a very
high precision, possibly due to a heuristics which opens a clause at each S point.

Robust Training. The false positive errors in the S and E identification produce
clause candidates that have not been considered when training the scoring clas-
sifiers. In this experiment we retrained such classifiers generating better sets of
negative examples, and exploring different sizes of negative examples. As de-
scribed in Sect.4.3, such training examples were generated with the correct set
of S and E points plus a P% of incorrect points, selecting those which were close
to the decision boundary of the learned spoint and epoint classifiers, respec-
tively. We used P values ranging from 0 to 100. In general, the higher the P
the more precise were the classifiers we obtained. The Plain Scoring, despite
the improvement in precision, did not improve the F measure because the recall
rates dropped faster. The Linear Average Scoring slightly improved its F rate,
but did not outperform the other variants on the default training. Finally, the
Best Split Scoring obtained significant improvements: the best performance was
achieved when adding a 20% of incorrect S predictions and 40% incorrect E pre-
dictions, giving an F rate of 87.22%. Table 1 (left) shows the results only for this
improved model. Naturally, the performance using the correct S and E (Table 1
right) deteriorated when incorrect predictions were also used.

Table 2 presents the results obtained by the different scoring functions on
the test set, together with the Open-Close results and the S and E performance.
As observed in the systems tested in the CoNLL competition [13], the test set
seems to be harder than the development set. Again, the Best Split Scoring
performs significantly better than the other approaches, and the robust training
of the function, with the setting tuned on the development, yields a significant
improvement in precision and the F measure.

Table 2. Results on the test set, both for the S and E identification (above) and
the general performance of the scoring functions (below)

prec. rec. Fso1
S points 93.96% 89.59% 91.72%
E points 90.04% 88.41% 89.22%
Open-Close 84.82% T73.28% 78.63%
Plain Scoring 85.25% T4.53% 79.53%
Best Split Scoring 86.44% T4.41% 79.98%
Linear Average Scoring | 86.53% 72.54% 78.92%
Robust Best Split Scoring|90.18% 72.59% 80.44%

46 Xavier Carreras et al.

6 Conclusions and Future Work

We have presented a framework for the identification of embedded structure in
sentences and investigated experimentally several instantiations of it. All the
decisions involved in the scheme are derived using learned classifiers, and thus it
is a scheme for doing inference with classifiers. We have shown that this approach
improves over the top-performing clausing system. Moreover, we believe that
the general framework developed here can be generalized to the identification of
embedded structures in other structure learning problems, such as information
extraction problems and other natural language processing, and this is one of
the important direction that we intend to explore in future work.

Several questions remain open with respect to the specific problem studied
here. The key one is that of incorporating the chunk parsing stage into the
framework rather than using its outputs. The idea is to maintain the ambiguity in
the classification longer, perhaps until it can be resolved using other information
sources, as our framework suggests. Other problems include investigating the use
of additional linguistic knowledge, such as the type of the clause, and avoiding
the significant bottleneck introduced by the S and E layer.

References

1. S. P. Abney. Parsing by chunks. In R. C. Berwick, S. P. Abney, and C. Tenny,
editors, Principle-based parsing: Computation and Psycholinguistics, pages 257—
278. Kluwer, Dordrecht, 1991. 35

2. S. Buchholz, J. Veenstra, and W. Daelemans. Cascaded grammatical relation as-
signment. In EMNLP-VLC’99, the Joint SIGDAT Conference on Empirical Meth-
ods in Natural Language Processing and Very Large Corpora, June 1999. 35

3. Xavier Carreras and Luis Marquez. Boosting trees for clause splitting. In Proceed-
ings of CoNLL-2001, pages 73-75. Toulouse, France, 2001. 35, 43

4. J. Goodman. Parsing algorithms and metrics. In Proceedings of the 34th Annual
Meeting of the ACL, pages 177-183, 1996. 36

5. G. Grefenstette. Evaluation techniques for automatic semantic extraction: com-
paring semantic and window based approaches. In ACL’93 workshop on the Ac-
quisition of Lezical Knowledge from Text, 1993. 35

6. Z. S. Harris. Co-occurrence and transformation in linguistic structure. Language,
33(3):283-340, 1957. 35

7. M. Munoz, V. Punyakanok, D. Roth, and D. Zimak. A learning approach to shallow
parsing. In EMNLP-VLC’99, the Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Corpora, June 1999. 35, 36

8. V. Punyakanok and D. Roth. The use of classifiers in sequential inference. In NIPS-
13; The 2000 Conference on Advances in Neural Information Processing Systems,
2001. 35, 36

9. L. A. Ramshaw and M. P. Marcus. Text chunking using transformation-based
learning. In Proceedings of the Third Annual Workshop on Very Large Corpora,
1995. 35

10. R. E. Schapire and Y. Singer. Improved Boosting Algorithms Using Confidence-
rated Predictions. Machine Learning, 37(3):297-336, 1999. 41

11.

12.

13.

Learning and Inference for Clause Identification 47

R. E. Schapire. The Boosting Approach To Machine Learning: An Oveview. In
Proceedings of the MSRI Workshop on Nonlinear Estimation and Classification,
2002. 41

E. F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-2000 shared
task: Chunking. In Proceedings of CoNLL-2000 and LLL-2000, pages 127-132,
2000. 35

Erik F. Tjong Kim Sang and Hervé Déjean. Introduction to the CoNLL-2001
shared task: Clause identification. In Walter Daelemans and Rémi Zajac, editors,
Proceedings of CoNLL-2001, pages 53-57. Toulouse, France, 2001. 36, 43, 45

	Learning and Inference for Clause Identification
	Introduction
	Clause Identification
	Inference Scheme
	Identifying Clauses
	Selecting the Clause Split
	A General Algorithm
	Scoring Functions

	Learning the Decisions
	AdaBoost
	Features
	Training the Classifiers

	Experiments
	Conclusions and Future Work
	References

