Abstract
We apply the NSGA-II algorithm and its controlled elitist version NSGA-IIc for the intensity modulated beam radiotherapy dose optimization problem. We compare the performance of the algorithms with objectives for which deterministic optimization methods provide global optimal solutions. The number of parameters to be optimized can be up to a few thousands and the number of objectives varies from 3 to 6. We compare the results with and without supporting solutions. Optimization with constraints for the target dose variance value provides clinical acceptable solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Peres, C. A., and Brady, L. W.: Principles and practice of radiotherapy. Lippincott-Raven, Philadelphia, 3rd edition, 1998.
Xing, L., Li, J.G., Donaldson, S., Le, Q.T. and Boyer, A. L.: Optimization of importance factors in inverse planning. Phys Med. Biol., 44 2525–2536, 1999.
Cotrutz, C., Lahanas, M., Kappas, C. and Baltas, D.: A multiobjective gradient based dose optimization algorithm for conformal radiotherapy. Phys. Med. Biol. 46 2161–2175, 2001.
Webb, S.: Optimization of conformal radiotherapy dose distributions by simulated annealing. Phys. Med. Biol., 34 1349–1370, 1990.
Lahanas, M., Baltas, D. and Zamboglou, N.: A hybrid evolutionary algorithm for multiobjective anatomy based dose optimization in HDR brachytherapy, to be published in Phys. Med. Biol. 2003.
Bortfeld, T., Ürkelbach, J., Boesecke, R. and Schlegel, W.: Methods of image reconstruction from projections applied to conformation therapy, Phys. Med. Biol. 35 1423–1434, 1990.
Haas, O. C. L., Burnham K. J. and Mills J. A.: On Improving the selectivity in the treatment of cancer: a systems modelling and optimisation approach. J. Control Engineering Practice, 5 1739–45, 1997
Haas, O. C. L.: Radiotherapy Treatment Planning: New System Approaches. Springer Verlag London, Advances in Industrial Control Monograph, ISBN 1-85233-063-5, 1999.
Knowles, J. D., Corne, D. and Bishop J. M.: Evolutionary Training of Artificial Neural Networks for Radiotherapy Treatment of Cancers in Proceedings of the 1998 IEEE International Conference on Evolutionary Computation IEEE Neural Networks Council, 0-7803-4871-0, pp 398–403, pp. 398–403
Knowles, J. D. and Corne, D.: Evolving Neural Networks for Cancer Radiotherapy, in Chambers, L.(ed.), Practical Handbook of Genetic Algorithms: Application 2nd Edition, Chapman Hall/CRC Press, pp. 443–448. ISBN L-58488-240-9, 2000.
Liu, D.C., and Nocedal, J.: On the limited memory BFGS method for large scale optimization. Mathematical Programming 45 503–528, 1989.
Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Technical Report 20001, Indian Institute of Technology, Kanpur, Kanpur Genetic Algorithms Laboratory (KanGAL), 2000.
Deb, K. and Goel, T.: Controlled elitist non-dominated sorting genetic algorithms for better convergence, in Proceedings of the first international conference. EMO 2001, Zurich, Switzerland, edited by E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, D. Corne, Lecture Notes in Computer Science Vol. 1993, Springer 67–81, 2001
Gandibleaux, X., Morita, H. and Katoh, N.: The Supported Solutions Used as a Genetic Information in Population Heuristic, in Proceedings of the first international conference. EMO 2001, Zurich, Switzerland, edited by E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, D. Corne, Lecture Notes in Computer Science Vol. 1993, Springer 429–42. 2001.
Milickovic, N., Lahanas, M., Baltas, D. and Zamboglou, N.: Comparison of Evolutionary and Deterministic Multiobjective Algorithms for Dose Optimization in Brachytherapy, in Proceedings of the first international conference. EMO 2001, Zurich, Switzerland, edited by E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, D. Corne, Lecture Notes in Computer Science Vol. 1993, Springer 167–180. 2001.
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto Archived Evolution Strategy. Evolutionary Computation 8 149–172, 2000.
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 37 257–271, 1999.
Deb, K. and Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9 115–148, 1995.
Deb, K. and Beyer, H.G.: Self-Adaptive genetic Algorithms with Simulated Binary Crossover. Evolutionary Computation 9 197–221, 2001.
Deb, K., Multi-Objective Optimization using Evolutionary Algorithms, Chichester, Wiley, UK, 2001.
Jaszkiewicz, A. Genetic local search for multiple objective combinatorial optimization, Technical Report RA-014/98, Institute of Computing Science, Poznan University of Technology, 1998.
Goel, T. and Deb, K.: Hybrid Methods for Multi-Objective Evolutionary Algorithms. KanGAL Report Number 2001004, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lahanas, M., Schreibmann, E., Milickovic, N., Baltas, D. (2003). Intensity Modulated Beam Radiation Therapy Dose Optimization with Multiobjective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds) Evolutionary Multi-Criterion Optimization. EMO 2003. Lecture Notes in Computer Science, vol 2632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36970-8_46
Download citation
DOI: https://doi.org/10.1007/3-540-36970-8_46
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-01869-8
Online ISBN: 978-3-540-36970-7
eBook Packages: Springer Book Archive