Skip to main content

Maximum Mutual Information Principle for Dynamic Sensor Query Problems

  • Conference paper
  • First Online:
Information Processing in Sensor Networks (IPSN 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2634))

Included in the following conference series:

Abstract

In this paper we study a dynamic sensor selection method for Bayesian filtering problems. In particular we consider the distributed Bayesian Filtering strategy given in [1] and show that the principle of mutual information maximization follows naturally from the expected uncertainty minimization criterion in a Bayesian filtering framework. This equivalence results in a computationally feasible approach to state estimation in sensor networks. We illustrate the application of the proposed dynamic sensor selection method to both discrete and linear Gaussian models for distributed tracking as well as to stationary target localization using acoustic arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor collaboration,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 61–72, 2002.

    Article  Google Scholar 

  2. S. Kumar, D. Shepherd, and F. Zhao, “Collaborative signal and information processing in micro-sensor networks,” IEEE Signal Processing Magazine, vol. 19, no. 1, 2002.

    Google Scholar 

  3. M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven sensor querying and routing for ad hoc heteregeneneous sensor networks,” Int. J. High-Performance Compu. Applicat., 2002. to appear.

    Google Scholar 

  4. Y. C. Ho and R. C. K. Lee, “A bayesian approach to problems in stochastic estimation and control,” IEEE Trans. Automat. Contr., vol. 9, pp. 333–33, 1964.

    Article  MathSciNet  Google Scholar 

  5. C. Knapp and G. C. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. on ASSP, vol. 4, pp. 320–326, 1976.

    Article  Google Scholar 

  6. D. Krishnamurty, “Self calibration techniques for acoustic sensor arrays,” Master’s thesis, The Ohio State University, 2002.

    Google Scholar 

  7. R. L. Moses, D. Krishnamurthy, and R. M. Patterson, “An auto-calibration method for unattended ground sensors,” in icassp, vol. 3, (Orlando, FL), 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ertin, E., Fisher, J.W., Potter, L.C. (2003). Maximum Mutual Information Principle for Dynamic Sensor Query Problems. In: Zhao, F., Guibas, L. (eds) Information Processing in Sensor Networks. IPSN 2003. Lecture Notes in Computer Science, vol 2634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36978-3_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-36978-3_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02111-7

  • Online ISBN: 978-3-540-36978-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics