Abstract
We discuss stochastic modeling of scaled coevolutionary genetic algorithms (coevGA) which converge asymptotically to global optima. In our setting, populations contain several types of interacting creatures such that for some types (appropriately defined) globally maximal creatures exist. These algorithms particularly demand parallel processing in view of the nature of the fitness function. It is shown that coevolutionary arms races yielding global optima can be implemented in a procedure similar to simulated annealing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E.H.L. Aarts, P.J.M. van Laarhoven. Simulated Annealing: An Introduction. Statist. Neerlandica 43 (1989) 31–52
H.-G. Beyer, et al.. How to analyse evolutionary algorithms, Theoret. Comput. Sci. 287 (2002) 101–130
A. Bucci, J.B. Pollack: A Mathematical Framework for the Study of Coevolution. In: C. Cotta, et al. (chairs). Proc. of FOGA VII. Morgan Kaufmann, San Francisco, CA, USA (2003)
T.E. Davis, J.C. Principe: A Markov Chain Framework for the Simple Genetic Algorithm. Evol. Comput. 1 (1993) 269–288
K. De Jong: Lecture on Coevolution. In: H.-G. Beyer, et al. (chairs). Seminar “Theory of Evolutionary Computation 2002”, Max Planck Inst. for Comput. Sci. Conf. Cent., Schloß Dagstuhl, Saarland, Germany (2002)
D.E. Goldberg: Genetic Algorithms, in Search, Optimization & Machine Learning. Addison-Wesley, Boston, MA, USA (1989)
D.L. Isaacson, R.W. Madsen. Markov Chains: Theory and Applications Prentice-Hall, Upper Saddle River, NJ, USA (1961)
A.E. Nix, M.D. Vose: Modeling Genetic Algorithms with Markov Chains. Ann. Math. Artif. Intell. 5 (1992) 79–88
H.H. Schaefer. Banach Lattices and Positive Operators. Springer Verlag, Berlin, Berlin, Germany (1974)
L.M. Schmitt, et al.. Linear Analysis of Genetic Algorithms. Theoret. Comput. Sci. 200 (1998) 101–134
L.M. Schmitt, C.L. Nehaniv: The Linear Geometry of Genetic Operators with Applications to the Analysis of Genetic Drift and Genetic Algorithms using Tournament Selection. Lect. on Math. in the Life Sci. 26, AMS, Providence, RI, USA (1999) 147–166
L.M. Schmitt. Theory of Genetic Algorithms. Theoret. Comput. Sci. 259 (2001) 1–61
L.M. Schmitt: Theory of Genetic Algorithms II. —Convergence to optima for arbitrary fitness function—. Tech. Rep. 2002-2-002, Aizu Univ. (2002). To app. in Theoret. Comput. Sci.
L.M. Schmitt: Asymptotic Convergence of Scaled Genetic Algorithms to Global Optima — A gentle introduction to the theory. In: A. Menon (ed.), Computing Horizons: The Hilbert Challenge Essays on the Frontiers of Evolutionary Computation. (to app.). Kluwer Ser. in Evol. Comput. (D.E. Goldberg, ed.), Kluwer, Dordrecht, The Netherlands (2003)
L.M. Schmitt: Coevolutionary Convergence to Global Optima. Tech. Rep. 2003-2-002, Aizu Univ. (2003), 1–12. Poster in Proc. GECCO 2003, Lect. Notes in Comput. Sci., Springer Verlag, Berlin, Berlin, Germany (2003)
L.M. Schmitt: Optimization with Genetic Algorithms in Multi-Species Environments. To appear: Proc. ICCIMA’03, Int. Conf. on Comput. Intelligence and Multimedia Appl., IEEE Press, New York, NY (2003)
K.O. Stanley, R. Miikkulainen: Continual Coevolution Through Complexification. In: W.B. Langdon, et al. (eds.). Proc. GECCO 2002. Morgan Kaufmann, San Francisco, CA, USA (2003) 113–120
M.D. Vose: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge, MA, USA (1999)
M.D. Vose, G.E. Liepins: Punctuated Equilibria in Genetic Search. Complex Systems 5 (1991) 31–44
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmitt, L.M. (2003). Theory of Coevolutionary Genetic Algorithms. In: Guo, M., Yang, L.T. (eds) Parallel and Distributed Processing and Applications. ISPA 2003. Lecture Notes in Computer Science, vol 2745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37619-4_29
Download citation
DOI: https://doi.org/10.1007/3-540-37619-4_29
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40523-8
Online ISBN: 978-3-540-37619-4
eBook Packages: Springer Book Archive