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Abstract 

S(ubstitution)-boxes are quite important components of modern symmet- 
ric cryptosystems. S-boxes bring nonlinearity to cryptosystems and strengthen 
their cryptographic security. An S-box satisfies the strict avalanche criterion 
(SAC), if and only if for any single input bit of the S-box, the inversion of it 
changes each output bit with probability one half. We present some interesting 
properties of S-boxes and propose an efficient and systematic means of generat- 
ing arbitrary input size btjective S-boxes satisfying the SAC by applying simple 
rules recursively given 3-bit input bijectective S-box(es) satisfying the SAC. 

1 Introduction 

For the good S-box design of DES [NBS]-like cryptosystems (FEAL [MSS],LOKI 
[BPS],etc) in the open cryptologic society, Kam and Davida [KD] proposed the com- 
pleteness condition that each output bit depends on all input bits of the substitution. 
Webster and Tavares [WT] introduced the strict adanche critetion( “SAC”) in order 
to combine the notions of the completeness and the avalanche efect [Fe]. Moreover, 
Forre [Fo] discussed the Walsh spectral properties of S-boxes satisfying the SAC and 
extended the concept of SAC to the subfunctions obtained from the original function 
by keeping one or more input bits constant, in order to prevent partial approxima- 
tion cryptanalysis. Lloyd [Ll] re-stated the Forre’s extended SAC and suggested the 
counting functions satisfying a higher order SAC. 
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This means that an average of one half of the output bits change whenever a single 
input bit is complemented. 

Definition 4 (SAC, Strong S-box) We say that a function f : 2; --t ZT satisfies 
the SAC, or f is a strong S-box, if for all i (1 5 i 5 n )  there hold the following 
equations : c f (x)  fB f(x a3 C y )  = (2n-l,2n-l,. . . , 2 n - l ) .  

X€Z,” 

If a function satisfies the SAC, each of its output bits should change with a prob- 
ability of one half whenever a single input bit is complemented. Clearly, a strong 
S-box is wmplete and exhibits the avalanche eflect. 

If some output bits depend on only a few input bits, then, by observing a significant 
number of input-output pairs such as chosen plaintext attack, a cryptanalyst might 
be able to detect these relations and use this information to aid the search for the key. 
And because any lower-dimensional space approximation of a mapping yields a wrong 
result in 25 % [Ba] of the cases, strong S-boxes play significant roles in cryptography. 

Notation For a function f : Z; -, Z F ,  denote by fj (1 5 j 5 m) the function 
2; --t 2 2  such that f(x) = ( fm(x), fm-l(x), . . . , f2(x),  fl(x)). We identify an element 
z = ( z k ,  zk-1, .  . . , ZZ, 21) of Z i  with an integer xF=l zi2i-1. To represent a function 
f :  Z ~ - + Z ~ , w e o f t e n u s e t h e i n t e g e r t u p l e <  f >=[f (O) , f ( l ) , f (2) ,  . . . , f ( 2 n - 1 ) ]  
and call it the integer representation of f. This representation can be obtained by 
combining < fm >, < fm-l >, . . ., < f 2  >, < fl > as < f >= C;, < f ,  > -2j-l. 

3 Properties of Strong S-box 
Let us discuss the cryptographic properties of strong S-boxes or functions satisfying 
the SAC. 

3.1 
Definition 5 (Linearity, Affinity) A function f from Zt  into ZT is afine if there 
exist an n x m matrix Af over 2 2  and an m-dimensional vector bf over 2 2  such that 

f (x) = x A ~  + bf 

where x denotes the indeterminate n-dimensional vector. A function f is linear if  it 
is afine with bj = 0. 

Some Functions Never Satisfy the SAC 

It is well known[HM] that any cryptosystem which implements linear or affine 
functions can be easily broken. This fact brings us the question : Are there linear or 
affine functions satisfying the SAC ? The answer is of course “no”. 

Theorem 1 A strong S-box is neither linear nor afine. 
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And also it is easy to see that 

Theorem 2 For n = 1, or 2, any bijective function f from 2; into 2; never satisfy 
the SAC. 

Thus in order to obtain bijective strong S-boxes, we must treat at least quadratic 
function of at  least three variables. 

3.2 
When rn = 1, and n = 3 or 4, the experiments tell us that we can easily generate 
many strong S-boxes f : 2; 4 2 2  by random search on an engineering workstation 
(SONY NWS810) in a few microseconds. But for the case of n 2 5 it becomes rather 
difficult to efficiently generate single output strong S-boxes in the same computational 
environment. 

Use of Single Output Strong S-box 

Example 1 For n = 3 and m = 1, 

< q >= 11, ~ , 1 , 0 1 0 , 0 , ~ , 0 1 ,  
< T >= [1,1,0,1,0,1,0,0] 

are integer representations of strong S-boxes p ,  q and T respectively. By complement- 
ing the output bit of the single output strong S-box p ,  q and r ,  we have 

< p' >= [O, 1 ,0 ,0 ,0 ,  1,1,1], 

< d >= p,o ,  0,1,1,1,0,1],  

< T' >= [ O , O ,  1,0,1,0,1,1] .  

It is easy to check that all of these functions are strong S-boxes. 

By the definition of the SAC and by the above observation, we can readily show 
the following. 

Theorem 3 Let e (g,resp.) denote an affine function from Z; ( Z y ,  resp.) into itself 
with a permutation matrix and an arbitrary b i n a y  vector. Then, a function f : 
2; + Z r  satisfies the SAC if and only if the composite function g o  f o e : 2; -+ ZT 
satisfies the SAC. 

Given some single output strong S-boxes, we can generat,e multiple output strong 
S-boxes using the idea summarized in the above theorem. (However, note that a 
strong S-box of m = n generated by this method is not guaranteed to be bijective.) 
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Example 2 The 3-input 3-output S-box f defined by f(x) = ( r (x ) ,p(x) ,q ' (x ) )  is 
strong, i.e., satisfies the SAC. Since 

< T >= [ l ,  1,0,1,0,1,0,0],  

< P >= [ I ,  0,1,1,1,0,0,01, 
< q' >= [O, 0, 0,1,1,1,0,1],  

then, the integer representation o f f  is 

< r > .4+ < p > .2+ < p' >= [6,4,2,7,3,5,0,1].  

Thus we can conclude this section by describing that there are no difficulties to 
efficiently generate many strong S-boxes up to the $-bit input case. 

4 Enlargement of Strong S-box 

4.1 Construction 

Next we discuss the expandable properties of strong S-boxes and present the recursive 
construction of strong S-boxes of arbitrary n and m. 

Let US construct ( n  + 1)-bit input S-boxes using n-bit input S-boxes. 

Definition 6 For a junction f : 2; + Z2, an integer k E { 1,2 , .  . . , n}  and a constant 
b E 22, define a function Dk[f]  : Z;+' -, 2, by Dk[f](O,x) = f ( x )  and D k [ f ] ( l , x )  = 
f ( x  CB cp)) CB b for ail x E z;. 
Definition 7 For afunction f : 2; -+ 2; such that f(x) = ( fn (x ) ,  fn-l(x), . . . , fi(x)), 
and a function g : 2; + Z2 and an integer k E {1,2,. . . , n } ,  define the function 
Ek[g, f ]  : Z;+* -, 2;" by 

E k [ g ,  ~ I ( Y )  = ( D S [ ~ I ( Y ) , D ~ [ ~ ~ I ( Y ) , D ~ [ ~ ~ - ~ I ( Y ) , . .  . , D ; [ ~ ~ I ( Y ) )  
for all y E z;+'. 

We can show that the constructed S-boxes have nice properties. 

Theorem 4 If a function f : 2; -+ Z2 satisfies the SAC, then for any  k E { 1,2 , .  . . , n}  
and any b E 2 2 ,  Dk[f]  also satisfies the SAC. 

Proof: Since f satisfies the SAC, it holds that 

c f(x) @ f(x @ $') = 2"-' 
X€Z; 
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for any i E { 1,2,  . . . , n}. Thus it also holds that 

c f(x) €3 f (x  €3 .I"') €3 1 

= 2" - c f(x) €3 f ( x  CB c!"') 

XEZZ 

XEZ," 

- - 2" - 2-1 
- 2"-1 - 

To prove the theorem, we denote D:[f] by g and show that for any i E { 1,2,. . . , n+1}, 

c g(y)  @ g(y @ Cj"+l))  = 2" 
yEZ;+' 

(Case 1) i E { l , 2 , .  . . , n } .  

(Case 2) i = n +  1 

Thus, we complete the proof. 
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Theorem 5 For a bijection f :  2; -, Z;! a function g : 2; +. Z2, and an integer 
k E {1,2, .  . . , n} ,  the function Ek[g ,  f ]  : 2;" --+ 2;" is bijective. 

For any u E 2; and v E Z;, let 

We have 

Since f is bijective, f(u) @ f (v)  = 0 if and only if u = v.  Therefore, if u # v,  
we have . ~ ( U , V )  = B(u,v) # (0,O) and C(u,v) # (0,O). And if u = v,  we have 
A(u,v) = B(u,v) = (0,O) and C(u,v) = (1,O)  # (0,O). Thus, A(u,v) and B(u,v) 
equals to  zero if and only if u = v, and C(u,v) never equals to zero for any u and 
v. These facts show that for any s E Z;+' and t E Z,"+', E k ( g , f ] ( s )  = E ' " [ g , f ] ( t )  if 
and only if s = t ,  in other words, that Ek[g ,  f] is bijective. 

Theorem 6 If both a bzjection f : 2; 4 2; and a function g : 2; -+ 2 2  satisfy the 
SAC, then for any integer k E { 1 , 2 , .  . . , n}, the function Ek[g,  f] : 2,"" 4 2;" 2s 
a bajection satisfying the SAC. 

Proof: This theorem follows directly from Theorems 4 and 5. 0 

For the explanatory purpose, we illustrate this method like Fig.1 in the Appendix. 

Remark: Define f, : 2; -+ 2 2  (i = 1,2,. . . , n )  by f(x) = (fn(x), fn-l(x), . . . , fi(x)) 
from the bzjection f : 2; -+ 2; satisfying the SAC. Noting that f i  satisfies the SAC, 
Theorem 6 tells us that given a bijection f : 2; 4 2; satisfies the S.4C we can 
construct a bijection E k [ f i ,  f ]  : Z;+l -+ Z;+' satisfying the SAC using only f (See 
Fig.2 in the Appendix). 0 

By using these construction methods, we can generate strong S-boxes in an efficient 
and systematic way. We give some examples in the next section. 



57 1 

4.2 Examples 
Here we give detailed examples to generate strong S-boxes. 

Example 3 A function f : 2: + Z2 which satisfies the SAC is given as < f 7= 
[l, 1,0,0,0,1,0,1] .  Thcn, 

< D;[f >= [1,1,O.O.O,1.0,1,1,1,0,0,1,0,1,0], 

and 
< D:[f] >= [l, 1,0,0,0,1,0,1,0,0,1,1,0,1,0,1] .  

By Theorem 4,  these expanded functions also satisfy the SAC. 

Example 4 When a strong S-box g : 2; + 2 2  is [1,0,0,0,1,1,0,1] and a bijective 
strong S-box f : 2: --+ 2; is [3,1,4,0,2,5,6,7], 

< Di[g] >= [1 ,0 ,0 ,0 ,1 ,1 ,0 ,1 ,1 ,0 ,1 ,1 ,0 ,0 ,0 ,1] ,  

and 
< Di[f] >= [3: 1 ,4 ,0 ,2 ,5 ,6 ,7 ,1 ,3 ,0 ,4 ,5 ,2 ,7 ,6] .  

By Theorem 6, we can get a strong bijectiue S-box : 

< E'[g,f]  >= [ll, 1,4,0,10, 13,G, 15,9,3,8,12,5,2,7,14].  

Also by applying Thereom 6 two times, we can get &bit input bzjectzve strong 
S-boxes : 

[4 ,53 ,16 ,57 ,43 ,15 ,2 ,6 ,12 ,55 ,  63,33,8,26,30,51, 

37,20,41,0,61,59,22,18,39.28,49,47,10,24,35,14, 

21,36,25,48,13,11,38,34,23,44,1,31,58,40,19,62, 

52,5,32.9,27.29,50,54, GO, 7,15,17,56,42,46,3], 

and 
[3G,21,48.57,43,45,2,38,12,23,63,1,8,58,30,19, 

3?,20,9,0,29,27,22,50,39,60,49,15,10,5G,35,46, 

53,4,25,16,13,11,6, 34,55,44,33,31,26,40,51,62, 

52,5,32,41,59, G l ,  18,54,28,7.47,17,24,42,14,3]. 

As stated earlier, the experiments on the random search show that we can easily 
find 3-bit input bijective strong S-boxes, but when the number of input is increased, 
it becomes more and more difficult to find even a 5-bit input bijective strong S-box. 

By applying Theorem 6 recursivelv, however, we can generate arbitrary input size 
bijective strong S-boxes given 3-bit input bijective strong S-boxes. This method is 
very useful in designing a bijective strong S-box with a larger input size. 
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5 Concluding Remarks 

We have summarized the cryptographically significant criteria for S-boxes of symmet- 
ric cryptosystems and proved several interesting theorems of st,rong S-boxes. More- 
over, we proposed two recursive construction methods from 3-bit input bijective strong 
S-box(es) to an arbitrary input size bijective strong S-box. 

The generated strong S-boxes can be useful for a basic building block of symmetric 
cryptosystems or pseudorandom generators. etc. 
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Appendix 
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Figure 1: Construction method using f and g ( 1 I k 5 n) .  

Figure 2: Construction method using only f ( 1 I k , j  I n) .  
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