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Abstract. In type theory based logical frameworks, recursive and co-
recursive definitions are subject to syntactic restrictions that ensure their
termination and productivity. These restrictions however greately de-
crease the expressive power of the language. In this work we propose
a general approach for systematically defining fixed points for a broad
class of well given recursive definition. This approach unifies the ones
based on well-founded order to the ones based on complete metrics and
contractive functions, thus allowing for mized recursive/corecursive defi-
nitions. The resulting theory, implemented in the Coq proof assistant, is
quite simple and hence it can be used broadly with a small, sustainable
overhead on the user.

Introduction

In this paper we propose a general approach for systematically defining fixed
points for a broad class of recursive definition.

The problem of ensuring well-defineteness of inductive schemata and pro-
ductivity of coinductive schemata is a long-standing and well-known issue. Es-
sentially, there are two kinds of approaches: either the proof system/compiler
checks automatically the definition by means of some syntactically decidable
mechanism, or the user has to provide the definition with a proof of its well-
defineteness.

The two approaches are complementary each other. The first approach is
more “user-friendly”, but strictly less expressive than the second; we just mention
the guarded-by-constructors condition [B, 8], implemented in Coq for ensuring
productivity of corecursive definitions.

On the other hand, in a more semantic approach a model is given for recur-
sive definitions, and a recursive definition is meaningful if it has a well-defined
meaning in such a model. This approach has been used e.g. in Isabelle/HOL
[I6], where the underlying semantic model is that of monotone functions on
sets. An alternative model, commonly used in concurrency theory [{], is that of
contractive functions over complete ultra-metric spaces. Here, a well-given recur-
sive definition induces a contractive function and therefore, by Banach theorem,
admits a unique fixed-point.
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Besides this, the metric semantic approach suffers other two problems.

First, it is unnecessarily complicated: ultrametric spaces have far more struc-
ture than that strictly needed to defined the fixed point. For example there is
no need to define the distance between to point as a value in R, because most
of the properties of R are not used in the proof of existence of fixed-points. As
a consequence it is now quite standard to define the distance as a value in N.
Still one can ask what are the basic properties that the values of distance need
to satisfy, to prove a fixed-point theorem, and at the same time what are the
essential properties of metric space.

Another problem is that quite often definitions are given by a mixture of
inductive and co-inductive arguments. A simple yet motivating example of such a
function is the following. Consider a function z : Stream — Stream over streams
of characters, implementing a sort of run-length compression: every sequence of
up-to nine consecutive ’1’s is replaced by a decimal digit representing its length
(for simplicity, we use just digit and not decimal numbers so that sequences
longer that 9 are represent by sequences of 9 and a final digit). This function
can be easily defined in any lazy functional language by a pattern matching
definition like the following:

2('0" 8) 270" i 2(s)

2’0 ms) 20 2(s)

e g2 0 A0) if ¢ > 9’
z(succ(c) :: s)  otherwise

One easily is convinced that this natural definition is well-given (i.e., produc-
tive): whenever a character is consumed in input without producing a character
in output, the function z is called on a different argument, closer to the thresh-
old ’9’, and thus eventually a character is produced. However, since it is not
guarded, this definition is not accepted by any co-recursive definition schema;
on the other hand, it is not clear how the metric approach alone can be used
to prove the convergency of this kind of definitions. In fact, the argument for
proving productivity of the schema above is both coinductive and inductive
(“closer. . . eventually”).

In this work we present a generalization of the ultra-metric that can be used
to prove convergency of a large class of recursive-corecursive definitions. Its main
feature is to encompass in a unique framework the well-order approach used in
inductive definition, and the metric approach, used in the co-inductive case.
Moreover, bearing in mind the usage of this approach in formal proof systems,
we strive for simplicity: unnecessary aspects of the metric approach have been
simplified. In fact we generalize the metric approach by taking only some key
properties needed to prove the existence of the fixed-point.

As an application to this idea we will show how our definition can be used
in the proof assistant Coq [I0] in order to validated co-recursive definitions that
are not accepted by any syntactic schema.



Synopsis In Section [ we develop the theory of general fixpoint definitions,
introducing the notions of (complete) ordered families of equivalences stemming
from ultrametric spaces. In Section B we apply this theory to two paradigmatic
examples (such as the run-length compression mentioned above). In Section f we
discuss briefly the implementation in the Coq proof environment. Comparison
with related work and some final remarks are in Sections f] and [ respectively.

1 A theory of general fixpoint definitions

In this section, we introduce some fundamental definitions and properties about
(complete) ordered families of equivalences, which can be seen as a synthetic
(generalization of a) dual presentation of ultrametric spaces. Three running ex-
amples (function spaces over well ordered sets, streams and ultra-metric spaces)
should be clarifying. Finally we will prove a result which allows the construction
of fixed points for a large class of schemata.

1.1 Ordered families of equivalences

Definition 1 (Well-founded relation). Given a set A, an order relation <
on A is well-founded if there is no infinite chain of elements a1, as,as, ... such
that ...a3 < as < aj.

It is well known that, given a set A with a well founded relation <, it is
sound to prove predicates, and to define functions, on A, by induction (recursion,
respectively), on the relation A. In other words, in order to prove that a predicate
P holds for all the elements of A, it is sufficient to prove that it holds for a generic
a using as hypothesis that P holds for all the predecessors of A. This is formalized
in the following accessibility induction principle

Va.(Va'.a' < a= P(a')) = P(a)
Va.P(a)

(Acc_ind)

which is available in many proof environments; for Coq [I0], it is provided by
the package Wf.

Notation. Given a set A with a relation < and an element a € A we denote with
la the set of predecessors of a (w.r.t. <), i.e., la={a’ € A|d < a}.

Definition 2 (o.f.e.). An ordered family of equivalences (o.f.e.) is a tuple
O = (A, <,X,=) where A (the carrier) and X (the domain) are sets, < is
a well-founded order on A and = is an A-indexed family of equivalence relations
(Za)aca on X.

We denote with = also the equivalence relation (\,c 4 =a, that is x =y if for
alla € A:x =, y.



Remark 1. We do not require = to be exactly the equality relation over X.
This allows us to also deal with situations where different kind of equalities
can be considered on the set X, for example the extensional, the intensional
and the Leibniz equalities. Important examples, for these situations, are logical
frameworks based on type theories [T0, [7]. In these situations our approach can
be used, given a contractive function f, to define a fixed point x for f. But, in
general this x is not the unique fixed point w.r.t. the intensional equality, but
only w.r.t. =.

We do not require the equivalences to get progressively finer, i.e., that for
all a < o/, =/,C=,. In fact this is not needed in the construction of the fixed
points, moreover there are applications that can be dealt with only using this
more liberal definition, see the following Example [[.a. (Remark 1)

Ezample 1. (a) (Function spaces) Let A = (A, <) be a set with a well-founded
order, and B a set. The ordered family of equivalences induced by < on the
function space X = A — Bis Oq_p = (A, <, A — B,=2"F) defined by

=!"" 9 <= I(a) = 9(a)

(b) (Streams) Let A be a set; we denote by Stream 4 the usual datatype of infinite
streams of elements of A (In the following, we will drop the index 4 when
clear from the context). For a € A and s € Stream, we denote by a :: s the
stream obtained by prepending a to s. For s € Stream and n € N, let s
denote the n-th element of s, and s<" the n-th approximant of s, that is the
(finite) list of the first n elements of s (thus, s<" = (s(®,...,s(®=D) and
<0 =()).

The natural o.f.e. over Stream is Osiream = (N, <, Stream, =) where for all
neNs=,t Ly g<n — y<n,

(¢) (Ultra-metrics) Let ¢ be a real number in the interval (0, 1), let S be an ultra-
metric space with a distance d : (S x.S) — R. We recall that an ultra-metric
space S is a metric space whose distance d satisfies a stronger version of the
triangular inequality, namely for all r, s,¢ € S: d(r, s) < max{d(r,t),d(t,s)}.
A pair S, ¢ induces an ordered uniformity Og . = (N, <, S, =), where r =,, s
iff d(r,s) < ¢" and < is the standard order on naturals. It is not difficult to
check Og . is indeed an ordered family of equivalences. (This can be seen as
an inverse of [I3, Ex. 4.2.27(13)]). Note that the order < is such that larger
elements in N induce finer equivalence relations on S. (Exzample 1)

1.2 Complete ordered families of equivalences

Definition 3. Let O = (A, <, X,=) be an o.f.e.. Let I be a subset of A, and
(Ta)aer a family of elements in X, indexed by I.

— We say that (4)acs is coherent if

Va',a €l .d < a= x4 =4 Ta.



— We say that (z4)qcs has as a limit y if
Va' €1 . Ty =q' Y-

Ezample 2. (a) (Function spaces) In the o.f.e. O4_ g of Example [[, a family of
functions (f,)qer is coherent iff for all ' < a € I we have fu(a') = fo(a’).

(b) (Streams) A family of streams (s, )necq is coherent iff for all n < m < o we
have s = s

(¢c) (Ultra-metrics) In the o.f.e. generated by an ultra-metric space, a coherent
family can be described as a subsequence of a Cauchy sequence with a fixed
convergency rate, that is Cauchy sequences (z,,)nen such that:

VYn € NVm > n:d(z,, z,) <"
(Ezample 2)

Definition 4 (c.o.f.e.). A complete ordered family of equivalences (c.o.f.e.) is
a tuple O = (A, <, X,=,lim.c 4, lim...) such that

— (A4, <, X,=) is an o.fe.;

— lim.c4 is a function such that for all coherent families (xq)aca, liMgca Zq
is a limit for (xq)aca;

— lim... is a function such that for all a € A and for all coherent families
(Tar)arela: iMg cq ko 15 a limit for (To)arcla-

Using a “dependent type” notation, the arity of the two limit constructors is

lim : (A — X) — X l'ig}:Hq(lan)eX
ac

Usually, as in all examples presented in this paper, these limit constructors are
defined by diagonalization, although in general this is not always the case.

Remark 2. Alternatively we could have given a stronger definition of complete-
ness, that is to ask for a function that gives a limit to every coherent family of
the form (x4)qcr, where I is a downward closed subset of A (i.e. if a € T and
a’ < a then o' € I). However this alternative definition would be equivalent to
ours. In fact |a and A are particular cases of downward closed sets, and they
suffices:

Proposition 1. Let O = (A4, <, X, =,lim.ca,lim...) be a c.o.f.e.. ForallI C A
downward closed, every coherent family of the form (xq)acr has a limit.

Proof. Given a coherent family (z,)qcr on any downward closed set I, we define,
by induction on <, a family of elements (y,)qca as follows:

N ED) ifael
Ya = limgcqyey faé&l

It is straightforward to prove, by induction on <, that (Y4 )aje is a coherent
family. It follows that (y4)aca is a coherent family. It is then immediate to check
that limge 4 y, is a limit also for (z4)ecr- O



The advantage of Definition @ is that we need to define limits only for two
particularly simple kinds of downward closed subsets: the whole carrier A and
the predecessors of elements of A. This is useful in practical reasoning in proof
assistants like, e.g., Coq, where conditions like “a’ < a” are rendered directly,
while “a € I” would require some (cumbersome) representation of sets.
(Remark 2)

Ezample 3. (a) (Function spaces) We extend O4_,p to a c.o.fe., by defining
lim.c 4 and lim... as follows

(iigg fa) (a') £ fur(a) (1131 fc> (@) 2 {fa/ (@) ifd <a

b otherwise

where b € B is some fixed element in B. It is immediate to test that lim.c 4
and lim... satisfy all the necessary conditions.
(b) (Streams) We can extend Ogiream to a c.0.f.e., by defining lim.cy and lim. ..

as follows:
0 1 ® i
lim s,, = (s(() ). sg LTI ssl") ), ie. <lim sm> £ SEZ)
meN meN
lim s, £ s, lim s, £ sg
m<n+1 m<0

where sq is an arbitray chosen stream. Again, it is immediate to check that
lim.cy and lim... give exactly a limit for coherent families, therefore they
extend Ogiream t0 a c.o.f.e..

(¢c) (Ultra-metrics) It is easy to check that for every generic ultrametric space
(S,d), and for every c € (0,1), the o.f.e. Og, is complete if and only if the
metric space (S,d) is complete. In fact suppose that Og . is complete and
let (s;)ieny be a Cauchy sequence in (S, d), then there exists a subsequence
of it, (sf(;))ien, such that Vi,j . d(sfqy, Spiivs)) = ¢7% i.e., there exists a
subsequence with with a fixed rate of convergency. It follows that (s(;))ien
is a coherent family and that lim;en s¢(;) is a convergency point for (s;)ien-
This proves that if Og. is complete then also S is complete. The converse
is immediate. (Ezample 3)

1.3 Contractive functions

Definition 5 (Contractivity). Given an o.f.e. (A, <,X,=) a function F :
X — X is contractive if for every pair of elements x,y in X and for every
element a in A, if Vo' < a . x =4 y, then F(z) =, F(y).

Ezample 4. (a) (Recursive definitions) A recursive definition, on a well-founded
relation <4 on A, of a function A — B can be defined by giving a function
F which maps an element a € A and a function f : la — B to a value on
B

! Using dependent types, this can be written as F : 1,4 (Hy:A(y <z)— B) — B.



In this case the function h : A — B recursively defined by F' is the unique
function satisfying the equation:

h(a) = F(a,h|q)
In fact, F induces a functional F*: (A — B) — (A — B), defined by

F*(f)(a) = F(a, f|1a)

It is straightforward to prove that for any recursive definition F' the function
F* is contractive w.r.t. the o.f.e. O4_, g induced by < 4.

(b) (Streams) A quite standard metric over streams, which can be generalized
to any syntactic structure, is d : Stream x Stream — R given as follows:

for s,t € Stream:  d(s,t) =2~ sup{n|s="=t="}

It is immediate to check that d(s,t) < 2~™ if and only if s =, t. A function
F : Stream — Stream is said to be contractive w.r.t. d iff for all s,t € Stream,
we have

d(s, 1)

AP (s),F() < 55

We can prove easily that F' is contractive w.r.t. d, if and only if F' is contrac-
tive w.r.t. the o.f.e. Ogyream. In fact if F' is contractive, w.r.t. the metric d,
then for each s,t € Stream and n € N such that for all m < n : s =, t, then
d(s,t) < 2=(»=1 and, by contractivity of F, d(F(s),F(t)) < 27", which
implies that F(s) =, F(t). The other implication can be proved similarly.
It is worthwhile to notice that syntactic conditions ensuring productivity
of corecursive schemata by means of some guardedness of recursive calls
(such as the guarded induction principle [G6], and the guarded-by-constructors
condition of CC(C°)"d [8] implemented in Coq [IM]), ultimately give rise to
functions contractive w.r.t. d.

(¢) (Ultrametrics) Given an ultrametric space (S,d) with d : (S x S) — [0, 1],
if a function F' is contractive, with constant ¢, in the metric d, then F' is
contractive in the o.f.e. Og ..

The implication in the other direction does not hold. A contractive map
F in Og,. maps r and y with distance d(z,y) € [¢"*1,c") to F(z) and
F(y), respectively, with distance d(F(x),F(y)) € [c",¢"!); however, the
difference between the two distances may be arbitrarily small: they could be
both arbitrary close to ¢. So we cannot find a constant contraction factor.
Thus, in defining the o.f.e. Og . we lost some information on the metric d.
(Example 4)

1.4 Construction of generalized fixed-points

We come now to the main result of this paper:



Theorem 1 (Generalized fixed-point). Let O = (A, <, X, =,lim.c 4, lim...)
be a c.o.f.e., and F a contractive function on X. Then, there exists a generalized
fixed pointf] z € X, that is an element x such that x = F(z).

Moreover for every other generalized fized-point y, we have that x = y.

Proof. We define by induction on < a family (z,).ca as follows:

Ty £ (})1<n; :cb)

By induction on < it is possible to prove that for each a € A the family (xp)pe)q
is coherent, that is:

Ve<bée la.x.=.xp .

In fact, by contractivity of F', this proposition follows from

Vi<c<bée |la. limzx, =4 limzx, .
e<c e<b

Indeed, by inductive hypothesis these limits are well defined; moreover, x4 =4
limec. xe and g =4 lime<p . by construction.

By a similar schema it is possible to prove that the complete family (xp)peca
is coherent.

We finally define the generalized fixed point = € A as

A 1.
r = lim z,
a€A

Let us prove that # = F(x). For every a € A we have that by construction
Zq =q T, while by construction and by contractivity of F, z, =, F(x), and from
these two equivalence we have the thesis.

Given any other generalized fixed-point y, it is then straightforward to prove
by induction on < that Va . x =, y. O

Ezample 5 (Function spaces). By applying Theorem [] the previous recursive
definition, on a well-founded relation <4 on A, of a function A — B can be
defined by giving a function F' that having in input an element a € A and a
function f, : (la) — B returns a value on B

The function F' induces a function: F* : (A — B) — (A — B), defined by:

FX(f)(a) = F(a, f]1a)

It is straightforward to prove that for any recursive definition F' the function F™*
is contractive w.r.t. the o.f.e. on (A — B) induced by < 4. Then, there is a fixed
point h = F*(h), from which it follows that h(a) = F(a, h|}q4)- (Example 5)

2 These fixed points are called “generalized” because the equivalence = need not to
be the equality relation “=", i.e., the diagonal.



2 Extended Examples

In this section we apply the theory developed in Section [ to two definitions
which are not dealt easily within Coq. The first example is the definition of the
run-length compression function mentioned in the Introduction; the second is
the definition of the stream of prime numbers. From these examples, finally, we
will draw some general guidelines for defining c.o.f.e.’s.

2.1 Run-length compression

Let us denote by Char = {0...255} the finite set of character codes; in what
follows, we denote by Stream the set of streams of characters. Consider the
function z : Stream — Stream, performing a run-length compression of up-to nine
consecutive 17, declared by the following ML-style pattern matching schema (for
sake of simplicity, let us suppose that the input stream of the function contains
only ’0’s and ’1’s):
2('0" 8) 270" i 2(s)
2(c'0 s) 20 2(s)

z(c:1 s) 2 ¢ 2(s) if e 29’
z(succ(c) :: s)  otherwise

This definition is not accepted in Coq or similar systems where productivity is
ensured by some syntactical condition. In fact, the definition is not guarded.
In spite of this, we will prove that z is a generalized fixed point of the obvious
function over the o.f.e. O = (Nx Char, <, Stream — Stream, =) defined as follows:

— (N x Char, <) is the lexicographic order, reversed on the second component
(i.e., (n1,c1) < (n2,c2) if Ny < ng, and (n,c1) < (n,c2) if 2 < 1);
— = is defined as follows:

f=ncg < Vs Stream . f(s) =, g(s)
AVs € Stream . Ya > c . f(a::8) =py1 g9(a::s)

It is easy to see that O can be extended to a c.o.f.e.. In fact it is sufficient
to check that any coherent family in the form (fp/ ¢ )n’.c’eNx Char has a limit
f. Using the limit construction on coherent families of streams, presented in
Example f(b) we can define f 2 As. lim, ey fny1.0/(s) (notice that the definition
works also if we substitute ‘0’ with any other character.) It is immediate to prove
that for any pair n,c we have: f,, . =5 ¢ fat1,/00 =n,c f. Therefore f is a limit.

Then consider the function F : (Stream — Stream) — (Stream — Stream)
defined by the schema above, i.e.,

F()(0 8) 270 2 f(s)
F(f)(c:0 ) 2 f(s)
) ife>"9
F(f)(c:'

ms)=c 0
) {C f(s
N f(succ(e) :: s) otherwise

(1>

1/



In order to check that F' is contractive it is sufficient to prove that if f =, cn(0) ¢
then F(f) =n+1,chr(255) F(g)’ and that f =n,succ(c) 9 then F(f) =n,c F(g)a and
this fact can be proved by cases.

For example to prove that: F(f) =,11 cnr(255) F(g) it is sufficient to prove
that for all streams s, F'(f)(s) =n+1 F(g)(s), and this can be proved by cases
on the shape of s. The most difficult case is when s = c::'1’ :: ' and ¢ <'9’, by
definition of F, our goal became f(succ(c) :: 8) =41 g(suce(c) = s), and since
chr(0) < succ(c) this is implied by the hypothesis f =, chr(0) 9-

2.2 Prime numbers

Consider the domain X £ NxN — Stream, and the function p : Nx N — Stream
defined by the following recursive equation:
n:pmxn,n+1) if MCD(m,n)=1
p(m,n) = ) . ( (1)
p(m,n+1) otherwise

Thus, p(m,n) is the stream of numbers > n, prime with respect each other and
to m. In particular, Primes = p(1,2) is the stream of all prime numbers. A
definition like ([l) is not guarded, thus it cannot be accepted by any syntactic
check based on guardedness of schemata. (In fact, the usual definition of the sieve
of Eratosthenes in Coq replaces in the stream of naturals, non-prime numbers
with 0’s [I1]). Actually, the proof of the productivity of ([) relies on the proof
that there are infinitely prime numbers.

In order to prove that the above definition is well defined, we introduce
the contractive functional F' defined by the schema above and prove that it is
contractive w.r.t. the o.f.e. O = (NxN, <, NxN — Stream, =) defined as follows:

— (N x N, <) is the lexicographic order
— = is defined as follows:

f=i;9 < ¥Ym,neN. f(m,n) = g(m,n)
AV¥m,n € N.(=(n+1) mod m) <j)= f(m,n) =11 g(m,n)

So we need to prove that if f =; ; g then F(f) =; ;41 F(g), and this implication
holds since a recursive call either generates a new digit of the stream, or increases
by one the second argument of the function. Moreover we need to prove that if for
every j € N f =, ; g then F(f) =,110 F(g). The main point in proving the above
equivalence is to prove that for all m,n such that —(n+1) mod m = 0 we have
that F'(f)(m,n) =42 F(g)(m,n); but in this case we have then n = (¢ xm) +1,
which implies that n and m must be prime with respect to each other. For these
arguments the recursive call of F' has to generate an argument and from this it
is straightforward to prove that the desired equivalence holds.

10



2.3 c.o.f.e.’s from mixed recursive/corecursive definitions

The examples presented above are two paradigmatic cases of mized recursive/co-
recursive definitions of coinductive datatypes. In fact, from a careful analysis of
these definitions, one can infer the right order and equivalences for the corre-
sponding c.o.f.e..

These mixed recursive/corecursive definitions are given by cases; in some
cases we have guarded corecursive calls, in the others unguarded calls but whose
arguments have “decreased,” with respect to some order. If the order of these
arguments is well-founded, these unguarded calls cannot be nested endlessly;
therefore, eventually a case of guarded call has to be applied, and thus an element
has to be produced.

Bearing these considerations in mind, we can say that in general

— the carrier is given by the product of two well founded orders (A1, <),
(A, <). The first one is associated to the finite approximants of the ele-
ments in X while (As, <) is a well-founded order on the datatypes of the
arguments which change in the non-guarded cases of the schema. The idea is
that in the tuple (a1, a2), a1 is a measure of how much the schema has pro-
duced so far (that is, how many productive calls have been applied), while
the second component, as, is a measure of how many non-productive calls
can be still applied;

— the order is a lexicographic order; the components of the arguments are
ordered decreasing accordingly to the non-productive calls of the schema;

— given z,y € X, * =4, 4, ¥ is defined by requiring = and y to be equivalent
at least up to the first a; elements (they have been obtained by at least ay
productive calls of the schema), and if they are given an argument less than
az, then the results must be equivalent up to af, for some a} > a;.

3 Implementation in Coq

An important point of this work is that all the theory developed in Section [l
is constructive. In particular, the proof of Theorem [l gives us an effective way
for building the fixed point for computable contractive functions over c.o.f.e.’s
whose limit functions are computable.

In fact, the theory presented in this paper has been thoroughly formalized
in Coq. This packagef] can be effectively used for the definition of fixed points
for contractive functions which are rejected by the syntactic restriction of the
logical framework. The user has to provide all the data of a c.o.f.e., that is a
order, the indexed equivalences and the two limit constructors:

Variable A : Set.

Variable less : (relation A).

Hypothesis less_wf : (well_founded A less).
Hypothesis less_trans : (transitive A less).

3 the full code is available at http://www.dimi.uniud.it/“miculan/CoqCode/COFE
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Variable X : Set.

Variable eqn : A -> (relation X).
Hypothesis eqn_equiv : (a:A)(equiv X (eqn a)).
Definition Eqn := [x,y:X](a:A)(eqn a x y).

Variable lim_t : (A -> X) -> X.
Variable lim_d : (a : A)((a’:A)(less a’ a) -> X) -> X.

Hypothesis completeness_t :
(fx:A->X) (coherence_t fx) -> (a:A)(eqn a (fx a) (lim_t £fx)).
Hypothesis completeness_d :
(a:A) (fxa:(a’:A) (less a’ a) -> X)(coherence_d a f xa) ->
(a’:A) (1 : (less a’ a))(eqn a’ (fxa a’ 1) (lim_d a fxa)).

Then, for any contractive function, the package provides the fixed point, unique
up to the equivalences.

Variable F : X -> X.
Hypothesis F_contr : (contractive F).

Definition F_aux := [a:A][pfx : (a’:A)(less a’ a)-> X](F (lim_d a pfx)).
Definition fx :=
[a:A] (Acc_rec 7 7 ([_:A] X)([al:AJ[_:...] (F_aux al)) a (less_wf a)).

Definition Fix_F := (lim_t fx).
Theorem GFPT_e : (Equn Fix_F (F Fix_F)).
Theorem GFPT_u : (fix:X) (Eqn fix (F fix)) -> (Eqn fix Fix_F).

Remark 3. Notice that in general, Eqn := [x,y:X](a:A)(eqn a x y) need not
to be equivalent to (eq X), that is the intensional equality of CIC. For instance,
on coinductive datatypes the interesting Eqn usually is some kind of bisimulation.
On streams, this becomes the extensional equality: two streams are equivalent
(bisimilar) iff they produce the same sequence of elements. This is strictly weaker
than internal equality (i.e., convertibility), because the latter has to be decidable,
while the former is not.

Extensional equality is what we get also when we apply the theory to the defi-
nition of plain recursive function over inductive datatypes, e.g. of type nat->nat.
If f:nat->nat is fixed point of a contractive functional F', we can prove that
(n:nat) (f n)=(F £ n), but in general we cannot prove that £=(F £f). The same
fact holds also for the other approaches to fixed point constructor in type the-
oretic frameworks, see e.g. [6] and [2, Equation (2)], where the reduction of
(Recyf< F') to its unfolding is given pointwise. However, if we compute fixpoints
over inductive datatypes (e.g., nat), we get back the usual internal equality.

(Remark 3)
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As an aside, it is interesting to notice that in the formal proof of Theorem [I,
we had to get rid of the recursion schemata over <, which is Acc_rec. The
reduction we need is the following:

Lemma BalaaBertot : (a : A)(fx a) = (F_aux a [a’:A;_:7?]1(fx a’)).

which is provable using the systematic method described in [2].

4 Related work

There is a lot of research aiming to overcome the limitations of guardedness-
based checks; the focus now seems to be on specific types systems. In [0] Giménez
has adapted Mendler’s type variables approach [I4] to the Calculus of Construc-
tions; although quite expressive, to our knowledge there is no proof of subject
reduction and strong normalization for this solution. Some recent development
along this line has been done in [, @].

On the other side, we mention Paulson’s work [I6], where inductive (resp.
coinductive) objects in Isabelle/HOL can be defined as least (resp., greatest)
fixed points of monotone set-trasforming operators, using an implementation of
Knaster-Tarski theorem. Syntactic restrictions in introduction rules are avoided
by reasoning about the set-trasforming semantics of the rules. Despite its gen-
erality, this theory has not a unifying solution for inductive and coinductive
definitions; thus, it is not clear if (and how) definitions like those in Section P
can be rendered.

The closest research to ours is Matthews’ [TZ], where a theory of converging
equivalence relations and contractive functions is developed in Isabelle/HOL.
In fact, c.o.f.e.’s can be seen as a generalization of CERs, since three axioms
of CERs ([, Fig. 1,(4)—(6)]) are not required for c.o.f.e.’s. Another significant
difference is that the development in [I7] relies on Hilbert’s choice operator,
which is not available in most proof editors (apart, of course, Isabelle/HOL).

Finally, general recursion definitions in type theories, which have been of
inspiration for this work, have been studied by Nordstrém [I5], Balaa and Bertot
[2], and Bove and Capretta [5].

5 Conclusions

In this work we have presented a general methodology for proving well-definiteness
of a large class of recursive-corecursive definitions. Its main feature is to encom-
pass in a unique framework the well-order approach used in inductive definition,
and the metric approach, used in the co-inductive case. Moreover, we strived for
simplicity: although this approach is rooted in the theory of contractive func-
tions over ultrametric spaces, we generalize the metric approach by taking only
some key properties needed to prove the existence of the fixed-point.

In order to check the expressivity of this approach, we intend apply this
approach to significative case studies. Some interesting applications could be in
the formalization of processes and protocols.
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From a pragmatical point of view, an interesting possible development is to
investigate how much the check of contractivity can be automatized.

Acknowledgments. We are grateful to the anonymous referees for their helpful
hints and suggestions.
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