Skip to main content

Data Mining for Motifs in DNA Sequences

  • Conference paper
  • First Online:
Book cover Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2639))

Abstract

In the large collections of genomic information accumulated in recent years there is potentially significant knowledge for exploitation in medicine and in the pharmaceutical industry. One interesting approach to the distillation of such knowledge is to detect strings in DNA sequences which are very repetitive within a given sequence (eg for a particular patient) or across sequences (eg from different patients who have been classified in some way eg as sharing a particular medical diagnosis). Motifs are strings that occur relatively frequently.

In this paper we present basic theory and algorithms for finding such frequent and common strings. We are particularly interested in strings which are maximally frequent and, having discovered very frequent motifs we show how to mine association rules by an existing rough sets based technique. Further work and applications are in process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, D.A.; Guan, J. W. (1998). “Computational methods for rough classification and discovery”, Journal of the American Society for Information Science, Special Topic Issue on Data Mining, Vol. 49(1998), No. 5, 403–414.

    Google Scholar 

  • Feldman, R.; Aumann, Y.; Amir, A.; Zilberstain, A.; Kloesgen, W. Ben-Yehuda, Y. 1997, Maximal association rules: a new tool for mining for keyword cooccurrences in document collection, in Proceedings of the 3rd International Conference on Knowledge Discovery (KDD 1997), 167–170.

    Google Scholar 

  • Feldman, R.; Aumann, Y.; Zilberstain, A.; Ben-Yehuda, Y. 1998, Trend graphs: visualizing the evolution of concept relationships in large document collection, in Proceedings of the 2nd European Symposium on Knowledge Discovery in Databases, PKDD’98, Nantes, France, 23–26 September 1998; Lecture Notes in Artificial Intelligence 1510: Principles of Data Mining and Knowledge Discovery, Jan M. Zytkow Mohamed Quafafou eds.; Springer, 38–46.

    Google Scholar 

  • Feldman, R.; Fresko, M.; Kinar, Y.; Lindell, Y.; Liphstat, O.; Rajman, M.; Schler, Y.; Zamir, O. 1998, Text mining at the term level, in Proceedings of the 2nd European Symposium on Knowledge Discovery in Databases, PKDD’98, Nantes, France, 23–26 September 1998; Lecture Notes in Artificial Intelligence 1510: Principles of Data Mining and Knowledge Discovery, Jan M. Zytkow Mohamed Quafafou eds.; Springer, 65–73.

    Google Scholar 

  • Frawley, W.J., Piatetsky-Shapiro, G., & Matheus, C.J. (1991). Knowledge discovery in databases: an overview. In G. Piatetsky-Shapiro, W.J. Frawley (eds). Knowledge Discovery in Databases (pp. 1–27). AAAI/MIT Press.

    Google Scholar 

  • Guan, J.W.; Bell, D. A. (1998), “Rough computational methods for information systems”, Artificial Intelligence — An International Journal, Vol. 105(1998), 77–104.

    MATH  Google Scholar 

  • Kiem, H.; Phuc, D. 2000, “Discovering motif based association rules in a set of DNA sequences”, in W. Ziarko & Y. Yao (ed.) Proceedings of the Second International Conference on Rough Sets and Current Trends in Computing (RSCTC’2000), Banff, Canada, October 16–19, 2000; 348–352. ISBN 0828-3494, ISBN 0-7731-0413-5

    Google Scholar 

  • Landau, D.; Feldman, R.; Aumann, Y.; Fresko, M.; Lindell, Y.; Liphstat, O.; Zamir, O. 1998, Text Vis: an integrated visual environment for text mining, in Proceedings of the 2nd European Symposium on Knowledge Discovery in Databases, PKDD’98, Nantes, France, 23–26 September 1998; Lecture Notes in Artificial Intelligence 1510: Principles of Data Mining and Knowledge Discovery, Jan M. Zytkow Mohamed Quafafou eds.; Springer, 56–64.

    Google Scholar 

  • Pawlak, Z. (1991). Rough sets: theoretical aspects of reasoning about data. Kluwer.

    Google Scholar 

  • Srikant, R.; Agrawal, R. 1995–1996, Mining sequential patterns: generalizations and performance improvements, in Proceedings of the Fifth International Conference on Extending Database Technology (EDBT), Avignon, France, March 1996; IBM Research Report RJ 9994, December 1995 (expanded version).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bell, D.A., Guan, J.W. (2003). Data Mining for Motifs in DNA Sequences. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2003. Lecture Notes in Computer Science(), vol 2639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39205-X_85

Download citation

  • DOI: https://doi.org/10.1007/3-540-39205-X_85

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-14040-5

  • Online ISBN: 978-3-540-39205-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics