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1. OVERVIEW. 

A k out of n p/s/r process [AS811 is a very efficient way to 
convey information (k words suffice to reclaim k words). But it 
provides virtually no cryptographic security for the information it 
deals with. 

A k out of n threshold scheme [DEBL, p. 179-1871 is very 
inefficient as a conveyor of information (k words are necessary to 
reclaim 1 word). But the linear threshold schemes provide Shannon 
perfect security [BL81a] up to threshold k. Examples of linear 
threshold schemes are Blakley projective [BL79], Blakley affine 
[BL73] , Shamir [SH79] , Bloom [BLBlb] , McEliece/Sarwate [MC81] , Some 
versions of Asmuth/Bloom [AS831 and some versions of Karnin/Greene/ 
Hellman [KE83]. In addition to the linear threshold schemes there are 
the threshold schemes due to Davida/DeMillo/Lipton [DA8O] , some 
Asmuth/Rloom schemes, and some Karnin/Green/Hellman schemes. 

For many practical purposes, Shannon perfect security is too much 
security if it is bought with k-fold (or more) bandwidth expansion. A 
magazine wanting to use a 4 out of 6 threshold scheme to store a 
mailing list occupying 12 rolls of magnetic tape might balk at the 
need to write, store and manipulate 72 rolls of mag tape to gain 
Shannon perfect security against opponents whose cryptanalytic 
expertise is unimpressive. But it might be willing to write, store 
and handle 24 rolls to get a specified -- more modest -- level of 
security, the reasoning being much t h e  same as what leads people to 
put locks on glass doors. You balance level of security against the 
amenities which less security provides, in an environment in which the 
opponents are viewed as troublesome but not too threatening. 
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We will follow a suggestion of Bloom's [BLBlb] and explore the 
properties of various versions of what we will call a "k out of n 
to yield d ramp scheme" (or, more briefly, a (d,k,n) ramp scheme). 
Figures 1.1, 1.2 and 1.3 will make clear why we chose the ramp 
terminology for the generalization of the notion of threshold scheme. 

One of the most important types of ramp scheme, the linear ramp 
scheme does the following. It takes d pieces of input information 
(i.e. members of a finite field F). From these d inputs (and using 
k - d other predetermined types of inputs, perhaps some of them 
random) it produces n outputs in such a fashion that the d inputs 
can easily be reconstructed from any k outputs. But there is a 
predetermined level of uncertainty (perhaps the level is zero, and 
there is an absolute upper bound dependent on j) regarding the 
inputs if only j outputs are known -- given that j < k. It should 
be obvious from the description above that the 

is implicit in this definition. 
The magazine mentioned above could use a 

assumption 

3,4,6) ramp scheme to 
turn its 12 input rolls of mag tape into 6 boxes (each containing four 
output rolls). This ramp scheme would have the property that it is 
easy to get the contents of all 1 2  input rolls back from any 4 boxes 
of four output rolls. A competitor of the magazine who gained access 
to only 3 of these boxes of four tapes each would have some knowledge 
of the contents of the 12 original mag tape rolls, but likely not 
enough to be useful. 

The basic security consideration in a linear k out of n 
threshold scheme is all-or-none, i.e. Shannon perfect security [BLBlb; 
SH791. For every word w belonging to the field F we have 

Probability (w is the word conveyed by the scheme I given 
that k-1 (or fewer) shadows are known) 

= Probability (w is the word conveyed by the scheme) 

In other words, no amount of knowledge of shadows [BL79] (coded words) 
below the threshold level k enables a Bayesian opponent [K081, 
p .  311 to modify an a priori guess regarding what information the 
scheme conveys. 

A k out of n threshold scheme is the extreme (l,k,n) case 
of the notion of ramp scheme. See Figure 1.2 below for a description 
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of a linear (l,krn) ramp scheme. A k out of n p/s/r process is 
the opposite extreme, the (k,k,n) case of the notion of ramp 
scheme. See Figure 1.3 below for a description of a linear (krkrn) 
ramp scheme). Here there is a small measure of security. If you 
intercept only k-1 shadows you can know at most (k-l)/lOOk per 
cent of the k pieces of information that were to be conveyed. And 
you may know less than that, depending on circumstances. We will 
address this point more fully below. 

Shannon relative security. This generalization of the notion of 
Shannon perfect security goes as follows. Consider the d 
dimensional vector space T consisting of all lists 

The basic security consideration in a (d,krn) ramp scheme is 

of d words (i.e. members of the finite field F in question). 
Somebody who knows how the linear ramp scheme in question has been 
designed and implemented can do no better than the following. Given 
knowledge of z shadows of the information there is an affine 
subspace U of T. The dimensionality dim (U) of this affine 
subspace U is 

dim(U) = mintd, max{O, k-z}} 

(see Figure 1). The subspace U has the property that for every list 

of elements of the 

Probability (the 1 

Probability (the 1 

field F in question we have 

st 5 to be conveyed does not belong to U) = O r  

st 5 to be conveyed is equal to w E U I given 
the knowledge of z intercepted shadows) 

Probability (the list 5 to be conveyed is equal to w E U )  

Probability (the list 5 belongs to U )  
- 

In brief, a Bayesian opponent in possession of z shadows from a 
(drk,n) linear ramp scheme now knows that the desired list €, belongs 
to U. This is a considerable increase over tha amount of information 
he had at the outset, before he knew any shadows. But, as to where it 
is within U, he knows no more than he did  before he had acquired any 
shadows. Thus suppose that 1 5  d 5 k 5 n. With z shadows 
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available, an opponent knows of a subspace U whose dimens 
given in the Figure 1.1 below. 

The concept of linear ramp scheme can also be extended 

on is 

to more 
general (nonlinear) ramp schemes (such as some versions of the 
Asmuth/Bloom ramp scheme) by associating a subset U of T to each 
set of z shadows, where T is merely a set of lists of d words 
instead of a vector space. Of course in this case we cannot put 
dimensionality requirements on U, since U will in general not be a 
linear space. We can, however put degree-of-freedom requirements on 
U, namely, that if U the subset of T corresponding to k-d+s 
shadows then knowledge of U leaves us with exactly d-s degrees of 
freedom. In other words, knowledge of U should not give us any 
information about any d-s member sublist of 5 = (g(l),c(2),...,E(d)) 
but knowledge of U and any d-member sublist should give us knowledge 
of the whole list. 

We will follow, to some extent, a recent view of threshold 
schemes due to S. Kothari [K085]. In addition to its unifying 
properties, his formulation neatly uncouples the probabilistic 
considerations from the algebra. This makes it possible for him to 
give simple elegant proofs of Shannon perfect security for many 
heretofore seemingly different threshold schemes. A l s o ,  he makes 
explicit the notion that Shamir's [SH79] threshold scheme is a special 
case of Bloom's [BLBlb]. We wish to point out that the converse 
statement also holds, in a sense. The first mention of this converse 
to Kothari's observation can be found in [KA83]. Thus it might be 
more appropriate to speak of a Shamir/Bloom scheme--or of the Bloom 
approach to a Shamir threshold scheme--henceforward, rather than of 
separate threshold schemes. Kothari also shows that the Bloom 
threshold scheme [KO851 is dual to the Blakley affine [BL83] geometric 
threshold scheme. So a l l  the known Shannon perfectly secure threshold 
schemes are linear algebraic, and are to a l l  mathematical intents and 
purposes identical. A corollary of this is that there are rigid 
[BL83J Blakley schemes and nonrigid versions of the other schemes. 

Since the theory of threshold schemes and ramp schemes seems to 
be maturing, we have collected all the papers touching it known to US 
in the references at the end of this paper. It is worth noting that 
Chaum also enunciated ideas [CH79; CH82] along the lines of threshold 
schemes and suggested implementations making use of cryptosystems. 



u-
ax

is
 

z-
ax

is
 
-
 

(0
,O

) 

...
 

*
*

*
*

*
 (n

,O
) 

k-
2 

k-
 1

 

k k+
l 

k+
2 ...
 

n-
 2

 

* 
* 

* 
* 

*
*

*
*

*
 

(k
,O

) 

...
 

2 1 0 0 0 0 0 

F
ig

ur
e 

1.
1 

G
ra

ph
 o

f 
nu

m
be

r 
u 

of
 

de
gr

ee
s 

of
 

u
n

ce
rt

ai
n

ty
 (

i.
e

. 
of
 

th
e 

di
ne

ns
io

n 
u 

of
 
th
e 

su
bs

pa
ce

 
U

) 
ve

rs
us

 n
uh

er
 

z 
of

 k
no

w
n 

sh
ad

ow
s 

in
 t

he
 g

en
er

al
 

(d
,k

,n
) 

li
n

ea
r 

ra
m

p 
sc
he
me
. 

Th
e 

ra
m

p 
fa

ll
s 

at
 a

 4
5 

de
gr

ee
 a

n
gl

e 
fr

an
 

(z
,u

) 
=

 
(k

-d
,d

) 
to
 
(z
,u
) 

= 
(k

,O
).

 

m
in

 [ d
, 
m
x
 {O

, k
-z
} 

} 

+
 

...
 

d 

k-
d+

2 
d-
2 

N
 

P
 

UI
 



u-
ax
is
 

k-
2 

k-
 1
 

k k+
l 

k+
2 

(n
,O
) 

...
 

n-
2 

n
-1

 

*
*

*
*

*
 

n 

I ***
*

*
*

*
 

1 1 0 0
 

0
 

0 0 0 0 
I 

( k
-1
 ,
 1 1

 
*

*
*

*
*

*
*

*
 *

*
*

*
*

 
(k
,O
) 

mi
n{
l,
 m
x(
0,
k-
2)
) 

+
 

...
 1 

1 

Fi
gu
re
 1
.2
 

Gr
ap
h 
of
 
nu
mb
er
 
u 

d
eg

re
es

 o
f 
un
ce
rt
ai
nt
y 

(i
.e
. 

of
 t

he
 d
im
en
si
on
 
u 

of
 
th
e 
su
bs
pa
ce
 

U)
 v
er
su
s 
rx
rm
be
r 

z 
of
 
kn
ow
n 
sh
ad
ow
s 
in
 a

 
(l
;k
,n
) 

li
ne
ar
 r
am
p 
sc
he
me
, 
i.
e.
 
a 

k 
ou
t 
of
 

n 
li
ne
ar
 t
hr
es
ho
ld
 s
ch
em
e.
 

T
he

 r
am
p 
fa
ll
s 
at
 a

 4
5O

 a
ng
le
 f
ra
n 
(z
,u
) 

=
 (
k-
l,
l)
 
to

 
(z
,u
) 

= 
(k
,O
).
 

N
 5 



(O
ik

) * 
* 

* 
* 

0 1 2 ...
 

k-
2 

k-
 1

 

k k+
l 

k+
2 ...
 

n-
2 

I-l
-1

 

n 

* 

k k-
 1

 

k-
2 ...
 

2 1 0 0 0 0 0 0
'

 

0 

* 
* 

* 

u-
ax
is
 b z-

ax
is
 -
 

(0
8

) 

* 
* 

* 
* 

* 
* 

* 
*

*
*

*
*

 
(k

,O
) 

F
ig

ur
e 

1.
3 

G
ra

ph
 o
f 

nu
nb

er
 

u 
de

gr
ee

s 
of

 
un

ce
rt

ai
nt

y 
(i

.e
. 
of
 

th
e 

di
m

en
si

on
 

u
 

of
 

th
e 

su
bs

pa
ce

 
U

) 
ve

rs
us

 n
um

be
r 

z 
of

 
k

n
m

 s
h

ad
w

s 
in

 a
 

(k
,k

,n
) 

li
n

ea
r 

ra
m

p 
sc

he
m

e,
 

i.
e.

 
a 

k 
c
u
t 
of
 

n 
li

n
ea

r 
p/

s/
r 

pr
oc

es
s.

 
T

he
 r
am
p 

fa
ll

s 
a

t 
a 

45
O

 a
ng

le
 f

m
n

 (
z,

u
) 

= 
(0

,k
) 

to
 

(z
,u

) 
= 

(k
,O

).
 *

*
*

*
*

 (n
,O

) 

m
in

(k
, 

m
ax

{O
rk

-z
}}

 

+
 E 



249 

2. GENERALIZED RAMP SCHEMES 

I n  t h i s  s e c t i o n  w e  d e v e l o p  a g e n e r a l  d e f i n i t i o n  of ramp scheme. 
T h i s  d e f i n i t i o n  is a c t u a l l y  more g e n e r a l  t h a n  needed f o r  t h e  e x a m p l e s  
i n  t h i s  p a p e r ,  b u t  w e  s t a t e  it i n  a s  much g e n e r a l i t y  a s  p o s s i b l e  i n  
o r d e r  t h a t  it c a n  be made t o  f i t  any  f u t u r e  examples of ramp schemes .  

( 2 . 1 )  D e f i n i t i o n .  A ( d , k , n )  ramp scheme is d e f i n e d  a s  f o l l o w s .  W e  
s t a r t  w i t h  a c o n c e a l i n g  set  V and a key set  W such  t h a t  

log pi k 

log IwI d 

e -  

where I I d e n o t e s  c a r d i n a l i t y .  L e t  II be  a s u r j e c t i v e  map f rom V 

t o  W ,  t h a t  is  l e t  n be  a map s u c h  t h a t  f o r  eve ry  w E W, t h e r e  is 
a t  l ea s t  one  v E V s u c h  t h a t  n(V) = W .  W e  w i l l  c a l l  II t h e  
r e v e a l i n g  map. Given  a key  e l e m e n t  w i n  W w e  choose  p o i n t  y i n  

n-'(w) c a l l e d  t h e  c o n c e a l i n g  p o i n t .  To t h i s  p o i n t  y w e  a s s o c i a t e  a 
se t  of n shadows 

{H(1), H(2), ..., H ( n l l  

where e a c h  shadow H ( i )  is a s u b s e t  of V such  t h a t  

a )  The i n t e r s e c t i o n  of a n y  k shadows is {y}. 

b) T h e r e  e x i s t s  a n  i n t e g e r  1 dependen t  upon d and k s u c h  t h a t  

i i )  The r e s t r i c t i o n  o f  x t o  t h e  i n t e r s e c t i o n  of any l shadows 
is  s u r j e c t i v e .  

i i i )  Knowledge a b o u t  w = x ( y )  i n c r e a s e s  i n  some r e g u l a r  way w i t h  
knowledge  o f  e a c h  shadow a f t e r  II. shadows. 

As an example  of what  w e  mean by t h e  l a s t  p a r t  of t h i s  
d e f i n i t i o n ,  s u p p o s e  t h a t  W i s  a v e c t o r  s p a c e  o f  d imens ion  s o v e r  a 
f i n i t e  f i e l d .  W e  c o u l d  r e q u i r e  t h a t ,  if H is t h e  i n t e r s e c t i o n  o f  
L + i  < k shadows,  t h e n  x ( H )  i s  a v e c t o r  s p a c e  of d imens ion  s-i. 

I n  t h e  t h r e s h o l d  scheme case (l,k,n) w e  can r e q u i r e  a scheme to  
be Shannon p e r f e c t l y  s e c u r e .  W e  d e f i n e  a t h r e s h o l d  scheme to be 

Shannon p e r f e c t l y  secure i f  i t  s a t i s f i e s  t h e  fo l lowing  c r i t e r i o n .  
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Whenever the intersection H of less than k shadows is known, then 
the probability that the image of x under TT is w is equal to the 
a priori probability of w ( in other words, 
Since some probabilities go to zero in the general ramp scheme case, 
and the remaining ones usually increase, Shannon perfect security is 
of course impossible. However, we can still require that no 
probability which remains positive increases any faster than any other 
which remains positive, i.e. that the ratios of the remaining positive 
probabilities remain the same. If this is not possible we can at 
least require that the ratios do not vary too much from the original. 
The following definition makes these ideas precise. 

p(n-'(w)IH) = p(w)). 

( 2 . 2 )  Definition. A (d,k,n) ramp scheme R is Shannon relatively 
secure if, whenever the intersection H of less than k shadows is 
known, then 

(2.3) 

for every pair of elements w and w* in n(H). A (d,k,n) 
scheme R is Shannon t-relatively secure if, whenever the 
intersection H of less than k shadows is known, then 

ramp 

We say that a ramp scheme is t-relatively secure with knowledge of r 
shadows if the above inequality holds whenever H is the intersection 
of r shadows. 

In the following lemma we show that the definition of Shannon 
relative security arises naturally from Shannon perfect security. 

( 2 . 5 )  Lemma. Let R be a (d,k,n) ramp scheme. Then R is Shannon 
relatively secure if and only if whenever the intersection H of less 
than k shadows is known, then 

In particular, a threshold scheme is Shannon relatively secure if and 
only if it is Shannon perfectly secure, and a Shannon relatively 
secure ramp scheme is Shannon perfectly secure up to and including 
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knowledge of k - d shadows. 

Proof: Let H be the intersection of no more than k shadows. If 

Thus, for  all w and w* in x(H) we have 

and so R is Shannon relatively secure. 

If w E x(H) then both p(rr-'(w)IH) and p(wln(H)) are zero. Now let 
n ( H )  = {w(O),w(l), ..., w(m)~. Then 

Conversely, suppose that R is Shannon relatively secure. 

P(X-'(W(O)) (H)/p(x -1 (w(i)) (HI = p(w(o))/p(w(i)) 

for 1 5 i 5 m. Moreover 

p(x -1 (w(O))(H) + ... + p(n-l(w(m))[H) = 1. 

This gives US a nondegenerate system of m + 1 linear equations in 
m + 1 unknowns p(n-'(w(O))lH) through p(x-'(w(m))lH) for which 

p(~-'(w(0) IH) = p(w(0) I n H ) ,  

p(rr-'(w(m) (H) p(w(m) I~(H)) 

is the unique solution. 
The last statement of the lemma follows from the fact that 

x(H) = W when no more than k - d shadows are known. 

The major advantage of the above definition of ramp schemes is 
that, as in the case of Kothari's [KO851 definition of linear 
threshold scheme, it allows us to characterize Shannon relative 
security solely in terms of the cardinalities of x-'(w) and 
x"(w) fl H .  
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( 2 . 6 )  Lemma. Let R be a (d,k,n) ramp scheme. Then R is Shannon 
relatively secure if and only if, whenever the intersection H Of 

fewer than k shadows is known, the equality 

holds for all w, w* in x(H). R is Shannon t-relatively secure if 
and only if, whenever the intersection H of fewer than k shadows 
is known, the inequalities 

hold for all w, w* in x(H). 

Proof. R is Shannon relatively secure if and only if 

But 

Since the point y in n-'(w) is chosen at random the distribution On 
x-'(wl is uniform and so 

Thus equation (2.3) in the definition of Shannon relative security 
becomes 

which reduces to equation ( 2 . 7 ) .  Similarly, inequality ( 2 . 4 )  in the 
definition of Shannon t-relative security becomes 
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which r e d u c e s  t o  i n e q u a l i t y  ( 2 . 8 ) .  0 

I n  t h e  r e m a i n i n g  s e c t i o n s  of t h i s  p a p e r  w e  examine s e v e r a l  
examples of ( d , k , n )  ramp schemes ,  a l o n g  w i t h  t h e i r  s e c u r i t y  p r o o f s .  

3 .  R I G I D  LINEAR SCHEMES 

I n  t h i s  s e c t i o n  w e  d e v e l o p  a g e n e r a l  l i n e a r  ramp scheme w i t h i n  
t h e  g e n e r a l  f ramework  se t  f o r t h  by K o t h a r i  i n  tK0851. Namely, l e t  V 

b e  a Vector s p a c e  of d i m e n s i o n  k o v e r  a f i n i t e  f i e l d  F, l e t  y be 

a p o i n t  of V h i d i n g  t h e  key  v e c t o r  i n  some way, and l e t  t h e  H ( i ) s  be 

h y p e r p l a n e s  i n  g e n e r a l  p o s i t i o n  w i t h  r e s p e c t  t o  y. ( T h i s  is a c t u a l l y  
less g e n e r a l  t h e n  K o t h a r i ' s  scheme, which also i n c l u d e s  p r o j e c t i v e  and 
a f f i n e  s p a c e s .  ) W e  l e t  W be Fd and w e  l e t  t h e  map n: V -f W be a 

l i n e a r  t r a n s f o r m a t i o n .  I t  t u r n s  o u t  t h a t  i f  t h e  H ( i ) s  a r e  o r i e n t e d  
so t h a t  t h e  i n t e r s e c t i o n  o f  any  1 of them wi th  a c e r t a i n  t r a n s l a t i o n  
of t h e  k e r n e l  of x is a l i n e a r  v a r i e t y  o f  d imens ion  min(k-l-d,O) t h e n  
any s u c h  scheme is Shannon r e l a t i v e l y  s e c u r e .  We make t h i s  
r e q u i r e m e n t  precise below. 

(3 .1 )  D e f i n i t i o n .  W e  d e f i n e  a ( d , k , n )  l i n e a r  ramp scheme i n  t h e  

f o l l o w i n g  way. L e t  F b e  a f i n i t e  f i e l d ,  l e t  V = Fk and l e t  

W = Fd. L e t  x:  Fk + Fd b e  a l i n e a r  t r a n s f o r m a t i o n .  Choose 
h y p e r p l a n e s  T ( 1 ) ,  T(2), ..., T ( d )  t h r o u g h  t h e  o r i g i n  s u c h  t h a t  
T ( 1 )  ... T ( d )  is t h e  k e r n e l  o'f x .  For 1 5  i 5 d r  l e t  t ( i )  be 
t h e  v e c t o r  s u c h  t h a t  

T( i 

Next choose  h y p e r p l a n e s  
t h e  s e t  

k = { x  E F 

t h r o u g h  t h e  

t ( i )  x = o}. 

o r i g i n  S ( 1 ) ,  ..., S ( n )  s u c h  t h a t  

is i n  g e n e r a l  p o s i t i o n ,  w i t h  r e s p e c t  t o  t h e  o r i g i n ,  t h a t  i s ,  s u c h  t h a t  
t h e  i n t e r s e c t i o n  o f  any  k members of t h e  se t  is t h e  o r i g i n .  F o r  
1 5 i 5 n l e t  s ( i )  b e  t h e  v e c t o r  s u c h  t h a t  
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(Thus the set of vectors {t(l), ..., t(d), s(l), ..., s(n)) is in 
general position.) For a given w in Fd we choose shadows by 
picking a point y at random in n-'(w) and 'then picking field 
elements c(1) through c(n) such that the intersection of any k 
of the hyperplanes 

is {yl. Since the hyperplanes S(i) are in general position, this 
can be done by choosing c(i) such that y is an element f each 
H( i) . Since y is also an element of each T( i )  , the se.t 

is also in general position with respect to y. 

(3.2) Proposition. The linear scheme is a (d,k,n) ramp scheme with 
I = k-d. Moreover, if k-d+s shadows are known, then all that is 
known about the key element w is that it lies in a vector subspace 
of W of dimension d-i. 

Proof: That linear schemes satisfy condition (a) of Definition (2.1) 
is clear from their definition. 

In order to prove the rest of the proposition, let H be the 
intersection of r shadows, where 1 5  r 5 r. Thus 

H = H(il) n ... n ~(i,). 

Let 

S = S(il) n ... n s(ir). 

Then H = S+a, where a E Fk. It follows that dim(x(H)) = dirn(x(S)), 
and so it remains to show that x ( s )  = Fa when r 5 d-k and 
dim(x(S)) = d-s when r = d-k+s. 

Since the S(i)s and the T(i)s are in general position, we 
have 
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d i m ( S  n T) = m i n ( 0 ,  d i m ( S )  + dim(T)  - k )  

= m i n ( 0 ,  k-r+k-d-k) 

= m i n ( 0 ,  k - ( d + r ) ) .  

I t  f o l l o w s  t h a t ,  i f  r = k-d-s where 0 5 s < k-d, t h e n  

d i m ( a ( S ) )  = d i m ( S )  - dim(S n T) 
= k- r - (  k - ( d + r l )  

= d  

Thus n(S 
l t s ( d  

I ,  and  h e n c e  x(H), is a l l  o f  Fd.  I f  r = k-d+s, where  

t h e n  

d i m ( n ( S ) )  = d i m ( S )  - dim(S fi T) 

= k-r-0 

= k-(k-d+s)  

= d-s .  

Hence d i m ( n ( H ) )  = d-s. 0 

( 3 . 3 )  Remark. W e  n o t e  t h a t  i f  t h e  s u b s p a c e s  S ( i ) ,  ..., S ( n )  are 
f i x e d  b e f o r e h a n d  a n d  made known t o  t h e  g e n e r a l  p u b l i c ,  no i n f o r m a t i o n  

a b o u t  t h e  key  e l e m e n t  w i s  g i v e n  away. Moreover, w e  are s a v e d  the 

t r o u b l e  of c a l c u l a t i n g  t h e  o r i e n t a t i o n s  o f ' t h e  H ( i ) s  anew each t i m e ,  
and economy is  g a i n e d  s i n c e  e a c h  shadow h o l d e r  o n l y  h a s  to  g u a r d  a 
s i n g l e  f i e l d  e l e m e n t  i n s t e a d  o f  t h e  e q u a t i o n  of a hype rp lane .  I t  

follows t h a t  a n y  e f f i c i e n t  ramp scheme w i l l  have t h i s  p r o p e r t y .  
However, as  w e  see, t h i s  p r o p e r t y  can  be b u i l t  i n t o  any l i n e a r  ramp 

scheme. 

Schemes i n  wh ich  t h e  S (  i)s are f i x e d  beforehand a r e  known as 
r i g i d  schemes  s i n c e  t h e  c h o i c e  o f  t h e  shadows H ( i )  is f i x e d  by t h e  

c h o i c e  o f  t h e  p o i n t  y E x - l ( w ) .  

( 3 . 4 )  Remark: I t  w e  t h i n k  of t h e  key e lement  w as a s i n g l e  random 

key, t h e n  t h e  a b o v e  c o n s t r u c t i o n  of r i g i d  l i n e a r  ramp scheme 
s u f f i c e s .  However,  i f  w e  t h i n k  of w as a v e c t o r  of d k e y s ,  or as 
d word t h a t  c o u l d  p o s s i b l y  be deduced  i f  w e  knew a s m a l l  p a r t  of i t ,  
w e  need to  p u t  f u r t h e r  c o n d i t i o n s  on t h e  scheme. For  example ,  w e  want  
t o  a v o i d  s u c h  i n s t a n c e s  as 
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s i n c e  t h i s  w o u l d  g i v e  away s o f  t h e  k e y s .  I n  o t h e r  w o r d s ,  i f  

p j :  Fd + F 

is  t h e  p r o j e c t i o n  d e f i n e d  b y  

p . ( x ( H ) )  t o  b e  a s i n g l e  p o i n t  of H i f  H is t h e  i n t e r s e c t i o n  of 
less  t h a n  k s h a d o w s .  B u t  s i n c e  x(H) is  a t r a n s l a t i o n  o f  n ( S ) ,  

w h e r e  S is t h e  i n t e r s e c t i o n  o f  t h e  S (  i ) s  c o r r e s p o n d i n g  to t h e  

H ( i ) s  whose  i n t e r s e c t i o n  is H ,  i t  i s  enough t o  r e q u i r e  t h a t  

p . ( x ( S ) )  f {O). T h i s  c a n  be d o n e  e a s i l y  by f i r s t  s e t t i n g  t h e  

s u b s p a c e s  T( j )  equal t o  k e r ( p j  0 x ) .  N o w  s u p p o s e  i n  s u c h  a case 
t h a t  p j ( x ( S ) )  = { O ] .  T h e n  S K e r ( p j  o x )  = T(j). B u t  t h i s  

c o n t r a d i c t s  t h e  f a c t  t h a t  t h e  S ( i ) s  w i l l  have  been  c h o s e n  s u c h  t h a t  

t h e  S ( i ) s  a n d  t h e  T ( j ) s  a re  i n  g e n e r a l  p o s i t i o n .  

p ( ( f  l , . . . , f d ) )  = f .  3 
w e  n e v e r  want 

3 

3 

( 3 . 5 )  Theorem. T h e  ( d , k , n )  l i n e a r  ramp scheme is Shannon 

r e l a t i v e l y  s e c u r e .  

Proof: By Lemma ( 2 . 6 )  it is e n o u g h  t o  show t h a t  g i v e n  H t h e  

i n t e r s e c t i o n  o f  L shadows, t h e n  

l n - l ( w )  n H I  l x - l ( W ) ~  
- - 

f o r  a l l  w a n d  w* i n  n(H). S i n c e  x is 
w e  know t h a t  

I I- 
f o r  a l l  w i n  Fd ,  so  i t  is e n o u g h  t o  show 

(W*) 1 
a l i n e a r  t r a n s f o r m a t i o n ,  

I 
t h a t  

( x - l ( w )  fl H I  = I x - ' ( w * )  fl H I  

f o r  a l l  w a n d  w* i n  n(H). 
-1 -1 S i n c e  x (w) is a t r a n s l a t i o n  of t h e  k e r n e l  of n, x (w) a n d  

H a r e  t r a n s l a t i o n s  of t w o  v e c t o r  s u b s p a c e s  i n  g e n e r a l  p o s i t i o n .  

T h u s ,  if t h e  sum o f  t h e i r  d i m e n s i o n s  is less t h a n  k ( t h a t  is, i f  H 

is t h e  i n t e r s e c t i o n  o f  more t h a n  k-d s h a d o w s )  t h e i r  i n t e r s e c t i o n  is 
e i t h e r  empty  o r  a s i n g l e  p o i n t ,  and  (n- ' (w) n H I  = 1 w h e n e v e r  
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w E x ( H ) .  If the sum of the dimensions of x-'(w) and H is greater 
than k ,  then 

dim(x-'(w) fl H) = dim(x-l(w)) + dim(H) - k 

for all w, so I x - l ( w )  n HI is the same for all w. 

Next we look at some examples of ramp schemes. 

A. Blakley Scheme 

The Blakley scheme is the scheme of Definition (3.1) with x 

taken to be a projection to a d-dimensional subspace of 
kernel of IL satisfies the conditions of Definition (3.1). This is 
essentially a rigid version of the Blakley scheme described i n  rBL791. 

Fk such that 

B. Bloom Scheme 

In this scheme [BLglb] we let V be (Fk)*, the space of linear 
functionals [H071, p. 971 from Fk to F. (Of course (Fk)* is 
isomorphic to F k . )  Let tl, . . . , td be linearly independent 

vectors in Fk. The map x: ( F k ) *  + Fd is given by 

Choose vectors I s 1 ,  ..., sn) in Fk such that the set  

is in general position. let 

s(i) = { L  E ( F  k *  1 L ( s ~ )  = 0 1  

and let 

T(i) = {L E (Fk)*l L(ti) = 0 ) .  

Then if we let T = T(1) n ... ii T(d), we have T = k e r ( x ) .  Let W 

be a point in F . Pick a linear functional G at random in 
x-'(w). The shadows H(i) associated to w are 
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Clearly H(i) is a translation of S(i), and so the Bloom scheme 
satisfies all the criteria for a linear ramp scheme. Moreover, it 
follows from the way we have defined the T(i)s that the Bloom scheme 
clearly satisfies the criteria of Remark (3.3). 

C. Shamir Scheme 

The Shamir threshold scheme [SH79] is defined as follows. Let 
f(x) be a polynomial of degree k-1 in F[x], where F is a finite 
field. Choose elements cl, bl, ..., bn. Let f(cl) be the key and 
let f(bl) through f(bl). If we know k shadows then we can use 
Lagrange interpolation to find f(x1 and hence the key f(cl). In 
[KO841 Kothari points out that the Shamir scheme is a special case of 
Bloom's scheme. Suppose that 

f(x) = do + a x + ... + anx k- 1 . 
1 

We let the linear functional L we are hiding be defined by 

we let the n vectors si in general position be 

2 si = (1, bi, (bi) , ..., (bi)k-l) 
and let tl be (1, bor ( b o )  2 , ..., (bOlk-l). The key is Levl. This 

This is clearly equivalent to Shamir's scheme. Moreover, since these 
vectors (which make up the Vandermonde matrix) are usually the ones 
chosen for the B l o o m  scheme anyway this means that Bloom's and 
Shamir's schemes are essentially equivalent. We point out that we can 
make Shamir's scheme into a ramp scheme by letting the key element be 
the vector (f(cl), ..., f(cd)) where cl, ..., cd are elements 
of F. 

D. Karnin/Greene/Hellman Scheme. 

In this scheme [KA83] the vector space Fd is replaced by (FeId 
and Fk by (Fe)k, where e is a positive integer. Let A(1) 
through A(d) be k-e by e matrices such that the k-e by d-e 
matrix formed by A ( 1 )  through A ( d )  is of maximal rank. Next choose 
matrices B(1) through B(n) such that any k member subset of 
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gives a k-e by k-e matrix of full rank. The map 

x: (Fe)k + (Fe)d- 

is given by 

x(x) = (A(l)*x, A(d)*x). 

Let 

T(i) = Iu E (Fe)k I A(i)-u = 0). 

Let 

S(j) = { x  E (Fe)k 1 B(j)*x = 01. 

Clearly the S(j)s and the T(j)s are in general position and the 
intersection of the T(i)s is the kernel of R. If w is a vector 
in (FeId choose a random member u of x-l(w). We let the ith 
shadow associated with w be 

H(i) = {x E (Felk I B(i)-x = B(i)-u}. 

The conditions of the Karnin/Greene/Hellman scheme are similar to 
those of Definition (3.1) and similar security proofs may be 
obtained. In particular, the Karnin/Greene/Hellrnan scheme reduces to 
Bloom's scheme if e = 1. Simply replace Fk by ( F k ) *  and the 
random vector u in n-'(w) by u* E ( F k ) * ,  where u*(x) = u * x 

x:  Fk + Fd' becomes k for every x E F . Then 

n(u* 

S(i) becomes {u* I u*(A and so forth. 

4 .  FIELD SIZES 

We have paid little attention to the field F underlying the 
vector spaces above. B u t  with general (d,k,n) ramp scheme, as with 
its special case the k out of n threshold scheme and the k Out 

of n p/s/r process it is necessary that the underlying field contain 
at least n members. The reason for t h i s  is that otherwise it i s  not 
possible to find the necessary hyperplanes (or points, as the case may 
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be) in general position as required by the formulation given in 
Section 3. 

Actually the cardinality of the field can drop as low as n-2 in 
some rather exceptional cases. There is, for example a Bloom 3 out Of 
6 p/s/r process (i.e. a Bloom (3,3,6) ramp scheme) whose underlying 
field is GF(4). The reason for this is that the six vectors 

[1 r 0 , O I  

tOr1rOl 
[ O r  Or11 
[1,1r11 
t 1  r a r  bl 
[l,b,al 

are in general position in GF(4)’, where the members of GF(4) are 
O,l,a and b = a . 2 

But the n-2 bound is seldom attained, and it is an open 
question [MA671 to characterize all the cases in which this happens. 

For many purposes there is no advantage to be gained by using 
large field in building a threshold scheme (i.e. a (l,k,n) ramp 
scheme) if a smaller field would suffice. The latter, which could be 
implemented more cheaply and quickly, would provide as much 
security--Shannon perfect security--as the former. 

But, when it comes to more general ramp schemes, there are many 
occasions on which use of a large underlying field might be 
desirable. Only Shannon relative security (or even merely Shannon t 
t-relative security) is available to the user of a (d,k,n) ramp scheme 
when d 2 2. 
shadows in which to hide the message needle. Somebody who used 
GF(2 ) as the underlying field for let us say, a (2,5,9) ramp scheme 
would have the consolation of knowing that an opponent who had 
obtained four shadows corresponding to a single test of two 32-bit 
words would still have nothing other than his a priori guess a5 to 
which of 4 billion possibilities was the correct value of the 6 4  bit 
string in question. The opponent would, of course, be better off for 
knowing the four shadows, having thereby eliminated more than 18 
billion billion possibilities. 

So it might be desirable to have a large haystack of 

32 

, 
Contrast this state of affairs with 8 successive applications Of 

a (2,5,9) ramp scheme over GF(16) to the same 6 4  bits of 
information. Each successive 8-bit substring would be narrowed down 
to one of 16 possibilities. The total possible number of values Of 
the 64  bit string would again be some what over 4 billion to an 

opponent who had intercepted four shadows of everything. But, though 
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the opponents recovery problems in the two cases at hand thus look 
mathematically equivalent, they are not cryptographically equivalent. 
Suppose for example, that the original 64 bit string were eight latin 
letters ASCII coded, and each of the successive two-halbyte lists were 
the ASCII code for a single letter. The 16 possibilities for each 
symbol would be narrowed down to 1 or 2 by the requirement that it be 
one of only 26 bytes among all 256 possible bytes. The opponent would 
thus recover the message without machine assistance if the underlying 
field were GF(16). GP(232) 
is employed. 

No such cheap approach is available when 

The question of infinite fields is a different matter, as noted 
in [BL83]. However the duality relationship between Blakley schemes 
and Shamir/Bloom scemes enables us to give a satisfactory solution to 
some of the problems raised in [BL831. We can now produce Shannon 
perfectly secure rigid Blakley projective geometric (d,k,n) ramp 
schemes which amount to natural, and very efficient, generalizations 
of infinite one-time pads [BL83]. This development will be described 
in full elsewhere. 

5. ASMUTH/BLOOM SCHEMES 

In this section we look at an example of a ramp scheme based on 

Choose prime numbers p(1) through p(d) and integers m(1) 
the Asmuth/Bloom threshold scheme [AS831 . 
through m(k+n) such that the following properties hold: 

(i) p ( 1 )  < p ( 2 )  < ... < p(d) < m(l) < ... < m(k+n) 

(ii) All of the numbers in (i) are pairwise relatively prime. 

k k- 1 (iii) n m(i) > p(d) m(k+n+l-i) 
i=l 

i=l j =l i=l 
k d k-d+l (iv) n m(i) < II p(j) II m(k+i) 

Denote the product of the p(i)s by P and the product of the k 
smallest m(i)s by M. Let V be the collection of all integers y 
such that 0 5 y < M. Let W be Z/PZ. Let the revealing map 1( be 
the evaluation mod P. We choose the shadows in the following way. 
Let w be an element of z/Pz.  Choose a random number A such that 
0 5 y = x+AP < M. The ith shadow H(i) is the set of all integers Z 

between zero and M such that y z z mod m(i+i). The intersection Of 
any r shadows H(il), ..., H(ir) is, by the Chinese Remainder 
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Theorem, t h e  s e t  o f  a l l  z between z e r o  and M such  t h a t  y z 
modulo t h e  p r o d u c t  of m ( k + i l )  t h r o u g h  m ( k + i r ) .  

(5.1) P r o p o s i t i o n :  The  Asmuth-Bloom scheme is a ( d , k , n )  ramp scheme 
w i t h  1 = d-k. Knowledge is g a i n e d  i n  a r e g u l a r  way w i t h  knowledge  of 
e a c h  shadow a f t e r  d-k shadows i n  t h e  s e n s e  t h a t  

a )  Knowledge o f  k-d shadows and knowledge of y modulo d-s+l  o f  

t h e  p ( i ) s  g i v e s  u s  knowledge  o f  w. 

b )  Knowledge of k-d+s shadows does  n o t  g i v e  u s  knowledge o f  

y modulo a n y  d-s o f  t h e  P(i)s. 

Proof :  F i r s t  w e  n o t e  t h a t  i f  t h e  m(i)s are  r e l a t i v e l y  close t o  t h e  
p ( i ) s  (wh ich  is g u a r a n t e e d  by p a r t  ( i i i )  of t h e  d e f i n i t i o n )  t h e n  

N o w  suppose  w e  know k shadows,  t h a t  is, suppose  w e  know y 

modulo k o f  t h e  m ( k + i ) s .  Denote  t h e i r  p r o d u c t  by 8 .  By t h e  

Ch inese  Remainder Theorem,  w e  know y mod B. S i n c e  B M I  there is 
o n l y  one  number z s u c h  t h a t  0 5 2 < M and y f 2 mod B ,  namely  y .  

Thus t h e  i n t e r s e c t i o n  o f  k shadows is a s i n g l e  p o i n t  i n  x ( w ) ,  and  

SO t h e  Asmuth-Bloom scheme s a t i s f i e s  p a r t  a1 of D e f i n i t i o n  ( 2 . 1 ) .  

-1 

Next s u p p o s e  t h a t  w e  know no  more t h a n  k-d shadows, t h a t  is, 
t h a t  w e  know y modulo  no  more t h a n  k-d of t h e  m ( k + i ) s .  Deno te  

t h e i r  p r o d u c t  by  B. By t h e  C h i n e s e  Remainder Theorem, w e  know 
y modulo B. By ( i i i )  and ( i )  M/B > P I  and s i n c e  P is  r e l a t i v e l y  

pr ime t o  a l l  t h e  m ( i ) s ,  t h i s  means t h a t  t h e  set  o f  a l l  i n t e g e r s  z 

z E y mod B and  z < M c o v e r s  a l l  congruence  classes modulo P. Thus 

t h e  r e s t r i c t i o n  of x t o  t h e  i n t e r s e c t i o n  o f  no more t h a n  k-d 

shadows is s u r j e c t i v e ,  and  so t h e  Asmuth-Bloom scheme s a t i s f i e s  p a r t  
( b )  of D e f i n i t i o n  ( 2 . 1 ) .  

Next ,  s u p p o s e  w e  know k-d+s shadows, where 1 5 s < d.  L e t  B 

d e n o t e  t h e  p r o d u c t  o f  the  c o r r e s p o n d i n g  m ( k + i ) s .  L e t  C d e n o t e  t he  

p r o d u c t  o f  any d-s o f  t h e  p ( i ) s .  By ( i )  and ( i i i )  M/B > C. Prom 

t h i s  f a c t  and  t he  f a c t  t h a t  C and B are  r e l a t i v e l y  p r ime ,  w e  c a n  
conc lude  t h a t  t h e  s e t  of a l l  i n t e g e r s  z such  t h a t  z P y mod B and  

z < M covers a l l  c o n g r u e n c e  classes m o d  C .  Thus,  i f  w e  l e t  p 

d e n o t e  t h e  p r o j e c t i o n  f rom 2 / P 2  t o  Z/CZ,  t h e  r e s t r i c t i o n  of p 0 n 
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to the intersection of the shadows is surjective, giving us part b) of 
the proposition. 

Finally, suppose that we know y modulo k-d-s of the primes and 
d-s+l o f  the m(k+i)s. Denote the product of the primes by C and 
the product of the m(k+i)s by B. By (i) and (iv) M < BC. Thus 
knowledge of y modulo BC gives us y, giving us part a) of the 
proposition. 

We note that conditions (iii) and (iv) of the definition of the 
Asmuth/Bloom ramp scheme can be changed by requiring that 

and 

k k-l+t 
ll m(i) > p(d) II m(k+n+l-i) 
i=l i= 1 

k d k-d+t 
ll m(i) < i7 p ( j )  II m(k+i) 
i=l j=1 i=l 

for some positive integer t < d. This would lessen the amount of 
information gained with each shadow. Knowledge of k-d+s shadows and 
d-s+t of the p(i)s would be required for knowledge of w. Or we 
could leave part (iii) of the definition unchanged: this would have 
the advantage of allowing us more leeway in choosing the m( i ) s ,  and 
would mean that knowledge of k-d+s shadows and d-s+t of the p(i)S 
would always give us knowledge of w, while knowledge of fewer of the 
p(i)s sometimes would and sometimes would not, depending on the 
shadows. However, in both cases efficiency would be lost. The change 
in part (iii) of the definition would require the ratio m(l)/p(d) to 
be larger, while the change in part (iv) would allow the ratio to be 
larger. 

( 5 . 2 )  Theorem. Let R be a (d,k,n) Asmuth/Bloom ramp scheme. Let 
P denote the product of the p(i)s, let M denote the product of the 
k smallest m(i)s, and, for 15 r 5 d-k, let Mr denote the product 
of the r largest m(i)s. If r 5 k-d then R is Shannon 
t-relatively secure with knowledge of r shadows if and only if 

If r > k-d then R is t-relatively secure if and only if 

[M/PI - l/t > 0 
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Proof: By Lemma (2.6) it is e n o u g h  t o  show t h a t ,  i f  H is t h e  
i n t e r s e c t i o n  of r shadows, t h e n  

(5.3) 

f o r  a l l  w a n d  W* i n  x(H). L e t  H b e  t h e  i n t e r s e c t i o n  of r 
shadows.  Then  H is  t h e  s e t  of a l l  z b e t w e e n  z e r o  a n d  M s u c h  

t h a t  z y m o d  B, where B is  t h e  p r o d u c t  o f  t h e  r m ( k + i ) s  

c o r r e s p o n d i n g  t o  t h e  I s h a d o w s .  The c a r d i n a l i t y  of x-'(w) for  a 
g i v e n  w i n  Z/PZ is e i t h e r  [M/P] or  [M/P] + 1, a n d  t h e  
c a r d i n a l i t y  of z - ' ( w )  H is  e i t h e r  [M/BP] or  [M/BP] + 1, w h e r e  

[ I d e n o t e s  t h e  g rea t e s t  i n t e g e r  f u n c t i o n .  W e  c o n s i d e r  the  t w o  cases: 

A: r 5 k-d ( i n  w h i c h  case [M/BP] > O), and 

B: r > k-d ( i n  w h i c h  case [M/BP] = 0 ) .  

Case A .  S u p p o s e  t h a t  I 5  k-d. Then [M/BP] > 0 .  The  worst possible  
case as f a r  as  t he  r i g h t  h a l f  of i n e q u a l i t y  ( 5 . 3 )  is c o n c e r n e d  is 

W e  a re  t h u s  r e d u c e d  t o  p r o v i n g  t h e  i n e q u a l i t y  

T h i s  is e q u i v a l e n t  t o  

S i n c e  B 5 N r  a n d  c a n  b e  e q u a l  t o  Nr i t  i s  t h u s  n e c e s s a r y  a n d  
s u f f i c i e n t  t o  h a v e  

The p r o o f  of t h e  l e f t - h a n d  s i d e  o f  i n e q u a l i t y  ( 5 . 3 )  is s i m i l a r .  
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Case B. Suppose that I > k-d. By conditions ( i )  and (iv) of the 
definition of the Asmuth/Bloom scheme we then have [M/BP] = 0, Thus 
the cardinality of x-l(w) H is either 0 or 1. Since we are 
only interested in proving the inequality fo r  w and W* in %(HI, 
the worst possible case as far as the right half of inequality ( 4 . 3 )  

is 

and 

We thus have to prove the inequality 

This is equivalent to [M/P] - l/t > 0. 

There are two apparent contradictions here that need to be 
resolved. First we might ask the question: what if we choose t 
such that [M/Pl - l/t < O? Then would it be possible that 

thus giving Shannon t-relative security for small t but not possibly 
for larger t? The answer is no. For suppose that [M/P] - l/t < 0 

and that equation ( 4 . 4 )  holds. Then we have 

Hence 

and so 
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Thus [M/NrPI - l/t > 0, and so [M/P] - l/t > 0. 

t-relative security after knowledge of k-d shadows is less stringent 
than the requirement before, making it seem that we lose information 
as we gain knowledge of the shadows. But this contradiction appears 
only if we forget the fact that after k-d shadows some 
probabilities, which are not figured in the computations of t-relative 
security, go to zero. Thus, in spite of appearances, we still have 
more information than before. 

The other apparent contradiction is that the requirements for 

Note that Shannon t-relative security and Condition (iii) of the 
definition of the Asmuth/Bloom scheme require that M be large in 
compa r i son to PN,, while Condition (iv) requires that M be 
relatively small. If d is large then Shannon t-relative security 
and Condition (iii) become relatively easy to obtain, while Condition 
(iv) becomes harder. The reverse is true if d is small. 

The difficulty seems to lie in the inequality in Condition 
(iii). If this inequality could be replaced by an equality, then it 
and the first two conditions would suffice to give us a ramp scheme. 
Condition (iv). This indeed can be done in certain cases of the 
generalized Asmuth/Bloom scheme, in which the integers are replaced by 
a Euclidean domain and the p(i)s and m(i)s can be replaced by 
relatively prime elements of the same degree. However, since the Only 
known practical example of such a scheme is Shamir's scheme [SH791, 
which was discussed in Section 3 ,  we refrain from discussing 
generalized Asmuth-Bloom schemes here. 

This work was supported in part by NSA Grant MDA-83-H-0002. 
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