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1. . INTRODUCTION 

This paper gives a definition of cryptosystem in terms of 
confusion, diffusion and replacement. This definition lends itself to 
infinite, as well as finite, structures, and the notion of group 
appears to play an essential role in it. We offer three theses for 
discussion. The first is that all known cryptosystems fit the 
definition. The second is that (Shannon) confusion amounts to left 
composition of a cryptographic relation with a message and left action 
of a cryptographic relation on a message, as well as that (Shannon) 
diffusion amounts to left composition of a message with a 
cryptographic relation and left action of a message on a cryptographic 
relation. The third is that what Shannon calls mixing cannot occur 
unless a certain type of "nonassociativity", or at least lack of 
adherence to some algebraic laws, is present in the descripton of a 
cryptosystem in accordance with this definition. 

The three theses are supported by examples below. If the first 
cannot be readily falsified, it would be interesting to express every 
cryptosystem -- as well as the known cryptanalytic attacks on it -- in 
the style of this paper. If the second cannot, it might be 
appropriate to use it as a precise definition of the notions of 
confusion and diffusion. If the third cannot, it might be a 
jumping-off point for a mathematical exploration of mixing. 

The approach of this paper can suggest new cryptosystems. It 
describes finite cryptosystems and infinite cryptosystems (such as 
analog speech scramblers) with equal facility. It organizes and 
simplifies the current variety of descriptions of cryptosystems. It 
is purely formal and has no place for mechanical or electrical 
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notions, such as lug, pin, rotor, box, etc. It can, however, describe 
the workings of crypto boxes which use such devices. 

2. MESSAGES, CONFUSION, DIFFUSION AND REPLACEMENT 

We define a message to be a nap (i.e. function) 

m: P/E + A/L 

where P and A are groups [PA66, p. 791, E is a normal subgroup 
[PA66, p. 1101 of P, and L is a normal subgroup of A. We speak of 
P/E as being the set of character positions, and of A/L as being 
the alphabet. In other symbolism, a message rn is a member of the 

cardinal power [MA67, p. 151 
notation for exponents, and so we write instead 

(A/L)P/E . We use the algol arrow 

m E (A/L) 4 P/E. 

A confusion operation s is a (binary) relation [PA66, p. 151 on 
A/L, i.e. a subset of A/L x A/L. A diffusion operation t is a 
(binary) relation on P/E. A replacement operation is a (binary) 
relation r on (A/L) t P/E. Usually a replacement operation is a 
function 

r: (A/L) 4 P/E + (A/L) 4 P/E , 

i.e. is a map which turns a message into another message. our first 
thesis states that all known cryptosystems are families of 
cryptographic keys, and that every cryptographic key is a succession 
of confusion, diffusion and replacement operations or messages. Thus 
this paper actually moves away from the generality of the "family of 
maps" definition which dominates the literature [DE82, p. 7: DI79, 
p. 398; K081, p. 281 at present. 

simplest kind of confusion operation. It is a permutation of A/L, 

i.e. a member of the set SYM(A/L) consisting [K081, p. 651 of all 
permutations of A/L. To encrypt a message 

For example a simple substitution cryptosystem key s is the 

by means of a simple substitution key 
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s E SYM(A/L) 5 (A/L) t A/L 

one forms the ordinary composite [PA66, p. 631 function 

s 0 m E (A/L) t P/E 

defined by setting 

for every p E P/E. As an example we will consider the plaintext 

message m = SUBSTITUTION. Let us take 

P = 2 ,  the integers under addition 

E = 122 = (...,-12,0,12,24,36,...) 

A - 2  

L = 262 

Thus we can view SUBSTITUTION as a function 

m: 2/122 + 2/262 

where we source-code by making the identification 

1 ++ A 

2 ++ 0 

25 ++ Y 

2 6 = 0 + + Z .  

In this case we have, for  example, 
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If s is the Caesar [KOBl, pp. 69-721 cipher 

s: Z/26Z * 2/26Z 

defined by s e t t i n g  

s ( C )  = C + 2 (modulo 26) 

i .e. 

A + C  

B + D  

then s 0 m is t h e  message 

s o m  

s o m  

s o m  

x + z  

Y + A  

2 + B. 

i n  other words t h e  p l a i n t e x t  message SUBSTITUTION is replaced by the  
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c r y p t e x t  message UWDUVKVWVKQP under  t h e  Caesa r  c r y p t o s y s t e m  key  "move 
t w o  p l a c e s  down t h e  a l p h a b e t . "  

t r a n s p o s i t i o n  c i p h e r  key  t o n  t h e  p l a i n t e x t  message TRANSPOSITIONS. 
To model t h i s  w e  c a n  c h o o s e  to t a k e :  

To e x e m p l i f y  d i f f u s i o n  a t  t h e  s i m p l e s t  l e v e l  w e  u s e  a 

P = Z ;  

E = 0 2  = {O], t h e  s m a l l  t r i v i a l  subgroup;  

A = Z :  

L = 2 7 2  . 
Here w e  h a v e  c h o s e n  t o  i d e n t i f y  l e t t e r s ,  p l u s  t h e  b l a n k  symbol ,  Of t h e  
l a t i n  a l p h a b e t  w i t h  members of 2/272 as f o l l o w s :  

27 = 0 ++ b lank  

1 ++ A 

2 ++ 0 

2 5  ++ Y 

26 ++ 2 . 
Then t h e  message  

amounts t o  t h e  f u n c t i o n  

d e f i n e d  by s e t t i n g  

m: 2 / 0 2  + 2 /272  

m: 2 + 2/272 

m ( C )  = 0 i f  C 5 0 

m ( A )  = 0 i f  A 2 15  
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W e  c a n  choose  a t r a n s p o s i t i o n  t which t u r n s  b l o c k s  of 7 l e t te rs  
a round ,  i .e. w e  c a n  c h o o s e  t s u c h  t h a t  

f o r  any  i n t e g e r  6 ,  any  p o s i t i v e  i n t e g e r  8 5 7. To e n c r y p t  t h e  
p l a i n t e x t  message  m, i.e. t h e  1 4 - l e t t e r  b lock ,  

TRANS POS IT IONS 

p r e c e d e d  and f o l l o w e d  by i n f i n i t e l y  many b l a n k s ,  u s i n g  t h e  
t r a n s p o s i t i o n  c r y t o s y s t e m  key  t w e  form t h e  c r y p t e x t  message  m 0 t .  
E v i d e n t l y  

i f  

i f  X 2 1 5  (for t h e n  t ( X )  2 15). But  

= m ( t ( 1  

= m ( t ( 2  

= m ( 7 )  

= m(6)  

- 0  

= P  

= R  

= T  

= m ( 1 4 )  = S 

= m(13)  = N 

(m o t ) ( 1 3 )  = m ( t ( 1 3 ) )  = m(9)  = I 

(m o t ) ( 1 4 )  = m ( t ( 1 4 ) )  = m(8)  = S 

The c r y p t e x t  m 0 t is t h u s  t h e  14-letter b lock  
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OPSNARTSNOITIS 

preceded and followed by infinitely many blanks. We note, in passing, 
that the definition of t is most naturally framed in terns of the 
cosets of the subgroup 72 of the group Z = P of message 
positions. We will return to this theme later. 

To sum up, our second thesis is that confusion (as Shannon 
[SH491 used the term) is applied to a message m by forming its left 
composite s Q m with a relation s on its codomain [MA67, p. 4 1 .  

If, in particular, s is a permutation we have substitution. 
Continuing the second thesis, we assert that Shannon diffusion is 
applied to a message m by forming its right composite m o t with a 
relation t on its domain [MA67, p. 41. If, in particular, t is a 
permutation we have transposition. In either case the natural group 
operation on the structure in question may be utilized to produce the 
needed permutations (or, more generally, functions or, most generally, 
relations). 

So far we have treated the only two ways you can form composites 
involving a message m, on the right and on the left. 
the possibility of regarding m itself as a domain point, and 
applying a function to it. This is the idea behind replacement. 
Replacement is a function r whose domain consists of messages and 
whose codomain also  does. One example, though an imperfect one, of 
replacement is a code book. 

There remains 

This paper will concentrate largely on finite non-Shannon 
cryptosystems, i.e. collections of keys which act on finite alphabets, 
and which are not based on the idea of many successive applications Of 
confusion, diffusion and replacement. The DES, an archetypal Shannon 
"roll the dough and fold it" [SH49] cryptosystem, will be treated in a 

later paper. 

3 .  MONALPHABETS AND CAESARS 

The composite q Q s of two simple (i.e. monalphabetic) 
substitution cipher keys 

q: A/L + A/L 

s: A/L + A/L 

is itself a simple substitution cipher key 



321 

q 0 s :  A/L + A/L 

which encrypts a message 

m: P/E + A/L 

by the rule which defines 

(q 0 s) 0 m: P/E + A/L 

by setting 
((q o s) 0 m)(p) = (q 0 s)(m(p)) = q(s(m(p))) 

for every P/E. The associativity, (q o s )  o m = q o ( s  0 m), of 
function composition is what Hellman calls the closure property. It 
means that one cannot achieve greater strength through mixing when one 
merely follows one substitution by another. Since SYM(A/L) is a 
group it follows that the collection MON[A/L] oE all monalphabetic 
substitution cipher keys on an alphabet A/L is a group isomorphic to 
SYM(A/L). The collection LCAE[A/L] of all left Caesar cipher keys 
on A/L is defined as follows. F o r  each a E A/L define 

k[a]: A/L + A/L 

by setting 

where # is the group operation of A/L. To encrypt a message 

m: P/E * A/L form the composite function 

A[al 0 m: P/E + A/L 

defined by s e t t i n g  

fo r  every 0 E P/E. The collection RCAE[A/L] of right Caesar cipher 
keys is defined analogously. If A/L is abelian then 
LCAE[A/L] = RCAE[A/LI = CAE[A/L], the set of all two-sided Caesar 
cipher keys on A/L. It is obvious from the proof of Cayley's theorem 
[PA66, pp. 120-1211 that LCAE[A/L] (under function composition) is 
isomorphic to A/L. Similarly RCAE[A/L] is isomorphic to A/L. 

A heuristic principle suggests itself here. If there are only 
about as many keys in a simple substitution cipher as there are 
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letters in the alphabet, you may be dealing with a Caesar cipher. We 
shall, in accordance with this heuristic principle, see that the 
Pohlig-Hellman and the Rivest-Shamir-Adleman number-theoretic 
cryptosystems are very Caesar-like. 

4 .  POLYALPHABETS AND ONE-TIME PADS 

We now give the group-theoretic formulation of classical 
polyalphabetic ciphers. Let us again use source coding to replace the 
latin alphabet by the set { O ,  1, 2, ..., 25) 5 Z 

A + +  1 

B + +  2 

Z + +  2 6 = 0  

and let us agree to regard it not merely as a set  [HA60, pp. 1-31 I but 
as an additive "A67, p.  711 abelian [MA67, pp. 71-771 group, 
Z/26Z = C26 = Z26 [MA67, pp. 129-1321. Here, as often below, we 

allow ourselves to indulge in the common abuse of language which uses 
equality ( = )  where isomorphism [MA67, pp. 56-57] ( g )  is meant. A 

polyalphabetic (n alphabets) cipher key is determined by a family 
[HA60, p .  341 

s :  Z/nZ + SYM(Z/26Z) 

of permutations [MA67, p. 721 of the "alphabet" Z/26Z. The family is 
indexed by the cosets [MA67, p. 511 (let us agree to call them by the 
coset leader names 1, 2, ..., n) within Z (considered as an 
additive abelian group) modulo the subgroup [MA67, p. 841 nZ. 

From the plaintext message 

m: Z + 2/262 

and the n-alphabetic cipher key 

s :  Z/nZ + SYM(Z/26Z) 

we form the cryptext message 
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y: Z + Z/262 
according to the rule 

y(e+k) = sX(m(e+k)) 

for every member e of the subgroup E = nZ, . every coset leader name 
A E A = (1, 2, ..., n). There is no harm in making the identification 

A = Z/nZ 

as long as you stick to a particular set of coset leaders (i.e. a 
particular set of names of cosets). In a strict mathematical sense A 

is the range of a choice function [HA60, p .  601 

Such a function f has the property that f(Q) E Q for every coset 
Q = j + nZ = { j + nt: 5 E Z} of nZ in Z. 

To exemplify this definition in a 3-alphabet substitution case, 
take the message 

POLYALPHABET 

i.e. 

such that 

m: Z/12Z + 2 / 2 7 Z  

m(1) = 16 = P 

m(2) = 15 = 0 

m(3) = 12 = L 

m(4) = 25 = Y 

m(5) = 1 = A 

m(6) = 12 = L 

m(7) = 16 = P 

m ( 8 )  = 8 = H 

m(9) = 1 = A 

m(10) = 2 = B 

m(l1) = 5 = E 

m(12) = 20 = T 
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and take 

defined by s e t t i n g  

s: 2/32 + SYM(2/272) 

s o ( a  + 01 = a + 2 

s l ( a  + 1)  = a + 3 

s 2 ( a  + 21 = a + 5 

f o r  each  a E 3 2 ,  where we have taken 

sl(m(l)) = s1(16) = 16 + 3 = 19 = S 

s2(m(2)) = ~ ~ ( 1 5 )  = 15 + 5 = 20 = T 

so(m(3)) = so(12) = 12 + 2 = 14 = N 

sl(m(4)) = s1(25) = 25 + 3 = 2 = B 

s2(m(5)) = ~ ~ ( 1 )  = 1 + 5 = 6 = F 

sO(m(6)) = so(12) = 12 + 2 = 14 = N 

sl(m(7)) = s1(16) = 16 + 3 = 19 = S 

S2(m(8)) = S2(8) = 8 + 5 = 1 3 = M  

sO(m(9)) = ~ ~ ( 1 )  = 1 + 2 = 3 = C 

sl(m(lO)) = s1(2) = 2 + 3 = 5 = E 

s2(m(ll)) = s2(5) = 5 + 5 = 10 = J 

sO(m(12)) = s o ( 2 0 )  = 20 + 2 = 22 = V 

So t h e  3-alphabetic encryption of 

POLYALPHABET 

in this key s is 
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STNBFNSMCEJV . 
Suppose that n = 1. Then nZ = 1Z = Z is the large trivial 

subgroup and 

(up to isomorphism). In this case the key s is a one-permutation 
family, i.e. a monalphabetic substitution cipher key. If n = 0 then 

is the small trivial subgroup and 

(up to isomorphism). In this case the key s: Z + SYM(Z/262) is an 
infinite family of permutations of the "alphabet" 2/262, one for each 
plaintext message letter. This is a one-time substitution (somewhat 
fancier than the classical bitwise one-time pad [K081, p. 1351 which 
uses 2/22 rather than 2/26Z as its alphabet). 

Evidently the underlying structure which embraces monalphabets 
(including Caesars), polyalphabets, and one-time pads is 

m: P + A/L 

s: P/E + SYM(A/L) 

y: P + A/L 

where P is a group with normal [MA67, p. 1061 subgroup E, where A 
is a group with normal subgroup L, where SYM(A/L) is the set (it 
is in an obvious and natural sense a group, of course) of permutations 
of A/L, where m: P + A/L is an arbitrary message, where # is the 
group operation in P ,  and where 

for every e E E, every coset [MA67, pp. 101-1031 leader A E A = P/E 

(equality being used where isomorphism is meant). Such a structure is 
called a (polyalphabetic) substitution cipher key. You can use right 
cosets instead of left cosets, with the obvious changes. Most 
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classical cryptosystems are based on additive [MA67, p. 711 abelian 
groups, so cosets are two-sided. 

The composite of two substitution cipher keys 

s: P/E + SYM(A/L) 

s: P/E + SYM(A/L) 
- 

is a substitution cipher key. 

In the commonest case we are dealing with residue classes 
[PA66, p. 531 of integers: 

P/E = Z/nZ. 

P/E = z/nz. 
- 

We let m = Icm( n , n ) ,  the least common multiple [PA66, p. 441 of 
n and n and we find that 

- 

Thus the composite of a 12-alphabetic substitution key on the alphabet 
A/L and a 42-alphabetic substitution key on A/L (in either order) 
is an 84-alphabetic substitution key on A/L. 

n-alphabetic substitution cipher key is n-alphabetic. The composite 
of any substitution cipher key with a one-time pad is a one-time pad. 
The collection of all substitution cipher keys on an alphabet A/L 
forms a group. 

The composite of a simple substitution cipher key with an 

5. INFINITE SUBSTITUTION CIPHERS AND TORSION 

The classical Vernam/Mauborgne one-time pad using a two-member 
alphabet can be described as 



327 

for every A E 2 .  Since 0 2  is the inverse limit (i.e. projective 
limit [MA71, pp. 68-721, in this case the intersection [HA60, 
pp. 14-181 of the members of the sequence 

2 = ( 2 ,  2 2 ,  32, ... 1 

we can say that 2 = 2/02 is a sort of limit of Z/Z, 2/22, 2 / 3 2 , . . . ,  

and thus that the one time pad is not merely an - alphabetic 
substitution cipher. It is also a limit of polyalphabetic 
substitution ciphers. It is torsion-free (i.e. lacking in nonzero 
elements of finite order [MA67, p. 811). But it is not the only limit 
of polyalphabetic ciphers. 
number q, the group Q/qZ amounts (up to isomorphism) to Q / Z ,  the 
rationals [MA67, pp. 166-1711 modulo 1. This group Q/qZ is the 
direct limit (i.e. inductive limit, colimit [MA71, pp. 67-68]. In 
this case, in a natural sense, the direct limit is the union [HA60, 
pp. 12-131 of the terms) of the sequence tHA60, p. 451 

Evidently for every nonzero rational 

Z / Z ,  2/22, 2/32, ... . 
This group is also the jumping-off point for the cipher key based o n  

m: Q -c A/L 

s :  Q/qZ + SYM(A/L) 

y(e + A )  = sx(  m(e + A )  ) 

for every e E qZ, every 1 E: A (the set of coset leaders of Q/qZ). 
This is also an - alphabetic substitution cipher. But it is all 
torsion [MA67, pp. 344-3481 (i.e. every element of Q/qZ is Of finite 
order). It repeats its (infinitely) many permutations of its alphabet 
at intervals of q. This suggests yet another alphabetic 
substitution cipher key based on 

m: R + A/L 

s: R/rZ + SYM(A/L) 

y(e + A )  = sx( m(e + A )  1 

for every e E rZ, every A E A (the set of coset leaders of 
R/rZ), where r is any nonzero real number. The structure R/rZ has 
very little torsion. Only the rational multiples of r have finite 
order. And they form a set of Lebesgue measure [R071, pp. 52-631 
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zero. This cipher key repeats its alphabets at intervals of r. If 
these last two cipher keys (the one whose permutations of its alphabet 
are indexed by Q/qZ and the one whose permutations of its alphabet 
are indexed by R/rZ) are equally easy to break, then torsion would 
seem to have little to do with the cryptanalysis of polyalphabetic 
substitution ciphers. If not, then torsion may play a role in such 
cryptanalysis. 

6. TRANSPOSITION CIPHERS 

A natural example of how cosets arise in transposition ciphers 
can be given in terms of a transposition cipher key which turns the 
message 

HOMOMORPHISM 
into the message 

OMOHPROMMSIH. 
One way to obtain this encryption is to reverse successive four letter 
strings 

HOMO + OMOH 

MORP + PROM 

HISM + MSIH 

This is compatible with the definitions 

m = {(l,H), (2,0), ..., (12,M)) U ( (j,blank): j f (1, 2 ,  ..., 12) 1 

and 

t = {(4w+l, 4w+4), (4w+2, 4w+3), (4~+3, 4~+2), (4w+4, 4w+l): W E 2 1 ,  

whence 

rn o t = {(l,O), (2,M), ..., (12,H))U {(j,blank): j # {l, 2, ... I 12)) 
Such transposition cipher keys are clearly of the form 

y(e + X )  = m( f(e + A )  ) = m( e + t(A) ) 
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where f(e + A )  = e + t(X) and 

t E SYM(A) = SYM(P/E) 

is arbitrary. In the case at hand 

7 .  MIXING AND " A S S O C I A T I V I T Y "  

The designer of a cryptosystem has no reason to be grateful for 
the associative law of function composition. suppose, for example, 
that 

q: A/L * A/L 

s :  A/L + A/L 

are monalphabetic substitution cipher keys and that 

t: P/E + P/E 

u: P/E + P/E 

are transposition cipher keys. Then we know from associativity that 

Such combinations of keys exhibit what Hellman calls closure. 
Repeated operations do not enhance security. Whenever, on the other 
hand, one can contrive operations such that, for example, 

or 

the possibility of greater cryptographic strength exists. The third 
thesis of this paper is that mixing (in the Shannon [SH49] sense) 
amounts to the failure of algebraic identities (such as commutative, 
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distributive or, especially, associative laws) which would make a 
cryptanalyst's job easier when dealing with cryptosystems which are 
compounded of a succession of confusion, diffusion, and replacement 
operations. 

How can associativity fail? It cannot when transposition and 
monalphabetic substitution are the only operations used. But we 
also have both polyalphabetic substitution and replacement at our 
disposal. 

Consider, first, a message 

a simple substitution 

s E ( A / L )  t A/L 

and a replacement 

r: (A/L) t P/E + (A/L) t P/E . 
The expression E ( s  0 m) makes sense and, in fact, 

s 0 m E (A/L) f P/E I 

whence 

r ( s  o m) E (A/L) t ( P / E )  

makes perfectly good sense. But what can (r(s)) o m mean? After 
all 

S E  

but the domain of r is ( A / L  

make sense of r(s), much less 
that an equality such as 

So there is usually no w a y  to 
m. Consequently- we conclude 

is impossible (and, in fact, nonsensical) in all but very special and 
contrived circumstances. What about a comparison between r(m 0 t) 

and (r(m)) o t ? In this case both symbols make sense, and both 
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symbols belong to 

( A / L )  t P/E . 
But are they equal? Not usually. For example let 

P = A = Z ,  

E = L = 2 2 ,  

whence 

Let 
P/E = A/L = 2 /22  . 

Then 

whence 
r ( m  0 t )  f (r(m) 

An equation such as 

o t .  

is not, of course, a true associative law, since r(m) is the action 
of a function r on a "point" m of its domain, whereas m 0 t is 
the composite of the function m following the function t. The 
design of DES uses all three operations, confusion, diffusion and 
replacement. And it achieves mixing by exploiting such failures of 
"associativity" in its rounds. 

"Associativity" can fail in other ways, too. We will content 
ourselves with merely mentioning one more example of failure of 
"associativity". The reader can easily verify the fact that 
polyalphabetic substitutions need not commute with transposition, even 
though monalphabetic substitution does, i.e. even though 
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s o (m o t) = ( s  0 rn) 0 t when m is a message, s is a 
monalphabetic substitution, and t is a transposition. 

8 .  NUMBER-THEORETIC CRYPTOSYSTEMS, MONALPHABETS AND CAESARS 

The Pohlig-Hellman [PO781 conventional cryptosystem (PHC) and the 
Rivest-Shamir-Adleman [RI78] public key cryptosystem (RSA) are number- 
theoretic cryptosystems in the sense of [BL79]. PHC is the 1-prime 
case. Both the prime p and @(p) = h(p) = p-1 must be kept 
secret. RSA is the 2-prime case. The prime p and q, as well as 
the totient @(pq) = (p-l)(q-l) and the universal [LE56, Vol. 1, pp. 
53-56] exponent k ( p q )  must be kept secret. Both cryptosystems are 
monalphabetic substitutions with large Caesar subsystems. 

To make this statement precise we sketch the definition of a 
general number-theoretic cryptosystem. So let 

w = np 

be a (square-free) product of odd primes p belonging to a (secret) 
set P of primes. Since P is secret, the universal exponent 
X(w) is secret. h(w) is, by definition, the least common multiple 
of the members of the set A = {p-1: p E PI. 

For a given modulus w = llp there are + ( k ( w ) )  encode/decode 
pairs (c,d) of positive integers less than A(w) such that 

cd a 1 (mod h ( w ) ) .  

Encoding is the process 

x + xtc mod w 

Decoding is 

y -* yfd mod w .  

Any key (c,dl in this cryptosystem thus amounts to an 
encryption process which is a permutation of z/wZ. Number-theoretic 
cryptosystems are thus monalphabetic substitutions on the alphabet 

A/L = Z/wZ 
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Since there are so few keys (c,d) corresponding to a given modulus 
w (i.e. to an alphabet A/L = Z/wZ) one might suspect the existence 
of a Caesar cipher, perhaps on a subset of this alphabet. And one 
does exist. There are elements y E Z/wZ with (multiplicative) order 
A(w). Let y be one of them and let r 5 Z/wZ be the set 

of powers of y .  Evidently r is a rather large subset of Z/wZ, 
since h(w)/w is fairly close to 1 if w is the product of just a 
few primes p such that p-1 does not have many small factors. The 
encryption process x + x4c effects a permutation of the members of 
any such r ,  since c is relatively prime to A(w). Encryption on r 
is the mapping 

where the asterisk denotes multiplication modulo A(w). Thus the 
encryption process, restricted to r l  is determined by the Caesar 
cipher mapping 

a + a*c . 
But to exploit our knowledge of the existence of very large Caesar 
subsystems of an RSA public key cryptosystem [RI78] or a 
Pohlig-Hellman conventional cryptosystem [PO781 we appear to 
have to find some appropriate y I  as well as its corresponding set r r  
and be able to solve a corresponding discrete logarithm problem. 

Let us take an RSA example. Let w = 35. The RSA is a 
monalphabet substitution cipher on the 35 member alphabet Z/35Z. In 
this case 

The Q(X(35)) = Q(12) = 4 keys amount to the 4 encrypt/decrypt 
exponent pairs 

(Crd) = ( 1 , l ) r  

(C,d) = ( 5 1 5 1 ,  

(c,d) = ( 7 , 7 ) 1  

(c,d) = (11,ll). 

One such r is the set 



r = {2,4,8,16,32,29,23,11,22,3,18,1} 

of all powers of y = 2. Let us note what happens when the key (5,5) 
is used. 

2t5 = (2tl)t5 = 2t(1*5) = 2t5 = 32 

42.5 = (2t2)t5 = 2t(2*5) = 2t10 = 9 

8t5 = (243)t5 = 2t(3*5) = 243 = 8 

16t5 = (2t4)t5 = 24(4*5) = 2t8 = 11 

32t5 = (2t5)t5 = 2t(5*5) = 2tl = 2 

29t5 = (2461t5 = 21(6*5) = 24.6 = 29 

23t5 = (2t7)t5 = 2t(7*5) = 2t11 = 18 

11t5 = (2t8)t5 = 2t(8*5) = 244 = 16 

2245 = (2t9)tS = 2t(9*5) = 2f9 = 22 

9t5 = (2t10)45 = 2t(10*5) = 242 = 4 

18t5 = (2tll)t5 = 2t(ll*5) = 2t7 = 23 

lt5 = (2t12)t5 = 2t(12*5) = 240 = 1 

So more than 1/3 of this RSA is a concealed version of the 
Caesar cipher 

t -t 5t modulo 12 

acting on the set 

{1,2,. ..,lO,ll,O = 12 = A(35)) 

A different y ,  r pair would be 

y = 3  

r = {3,9,27,11,33,29,17,16,13r4,12,i}. 

A similar analysis can be provided fo r  the Caesar cipher based on this 
y ,  r pair. 

as weak because each of them has a huge subsystem r such that the 
cryptosystem operation on r is equivalent to a Caesar cipher key. 
We are left, rather, with a renewed respect for the much-maligned 
Caesar cipher because it can be transformed and inserted into a 

It seems inappropriate to regard number-theoretic cryptosystems 
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number-theoretic cryptosystem in a natural way that, as of this 
writing, leaves it unbroken. 

9. RSA and factorization 

RSA is formulated with Z and Z/wZ as the rings which draw 
most of our notice. We therefore pay a lot of attention to the 
problem of factoring w into the product of two primes p and g in 
the ring Z of integers. But the group-theoretic approach is neutral 
as regards the ring in question. There are infinitely many 
factorizations of an RSA modulus w. Many, such as the trivial 
factorizations 

or 

w = ci * ( w/JS ) 

seem to hold out little promise to a cryptanalyst. 

disciplined -- and perhaps more informative -- approach to 
factorization. It might be interesting to look at factorizations in 
the integral domain Q [ e ]  of an algebraic number [LE56, v o l .  2 ,  
pp. 34-811 field Q ( e )  (Here Q is the field of rational numbers, 
and 8 is algebraic over Q ) .  Such a factorization might [CR831 
contain information sufficient to enable a cryptanalyst to calculate a 
large multiple k#(pq) of $(pq) = (p-l)(q-l). This would be enough 
information to provide a (very large) decoding exponent. 

the form e = ./d for d E 2 )  and how to calculate a generalized 
Euler totient function in that Q[e] is open. But it would seem that 
those who wish to use RSA might want to satisfy themselves that it 
does not yield to attacks of the Q[6] type any more readily than to 
attacks made entirely within 2. 

At Crypt0 '83 H. C. Williams suggested a somewhat more 

The question of how to search for an appropriate 8 (perhaps Of 

10. DISCUSSION 

The motivation behind this work was to extend cryptography to 
infinite structures by analogy with recent extensions of the notion of 
threshold scheme [BL83] to infinite structures. But it seems 
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necessary to justify the naturalness of the group-theoretic 
formulation as an abstraction arising out of consideration of many 
finite, as well as a few infinite, structures. So this paper dealt 
largely with finite examples, and very simple ones, to argue for the 
ubiquity of the 

m: P/E + A/L 

structure of messages. In the analog case, to be considered 
elsewhere, P/E and A/L are more likely to be infinite groups such 
as R/OR = R, or R/2xZ (essentially the complex unit circle under 
multiplication). 

We have given candidates for precise definitions of the rather 
intuitive notion of confusion (including substitution as a special 
case) and diffusion (including transposition). We have distinguished 
between a cryptosystem (a family of keys) and a key, i.e. a map which 
can be expressed in terms of confusion, diffusion, and replacement. 
This approach to key seems more mathematically natural than the 
old-fashioned viewpoint which regards a key as a number which, when 
entered into a crypto box, gives rise to the map this paper calls a 
key. 

than the one commonly found [KOBl, pp. 69-72 ]  in the literature, and 
have shown that Caesars are not as cryptographically trivial as the 
conventional wisdom dictates. The Caesar cipher illustrates well, in 
a confusion/substitution context, what we hope to exemplify elsewhere 
regarding diffusion/transposition, namely that the natural group 
operation on the domain (resp. codomain) is often the basis of the 
diffusion operator t (resp. confusion operator s ) .  

We have given a precise definition of Caesar cipher more general 

The maps encountered in the keys which make up most well-known 
cryptosystems are not morphisms. Indeed the less algebraic structure 
these maps exhibit, the more likely the cryptosystems employing them 
in keys are to be secure. This seems to suggest more reliance on 
nonabelian groups P and A both in the design of future 
cryptosystems and in the upgrading of existing cryptosystems. 
Perhaps, eventually, even more general structures (e.g. monoids, 
semigroups, etc.) might become useful in cryptosystem design. 

More complicated finite cryptosystems, such as Polybius, 
Delastelle, Playfair [ K A 6 7 ]  and the remarkably highly structured DES,  

require a deeper and more interesting elaboration of the topics 
introduced above. After that it will be natural to turn to infinite 
structures and to cryptanalysis. We will treat such topics elsewhere. 

NSA Grant MDA-83-H-0002 supported this work. 
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