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ABSTRACT

Signatures based on polynomial equations modulo n have been intro-
duced by Ong, Schnorr, Shamir [3]. We extend the original binary quad-
ratic OSS-scheme to algebraic integers. So far the generalised scheme
is not vulnerable by the recent algorithm of Pollard for solving

s? + k sg = m (modn) which has broken the original scheme.

1. INTRODUCTION

Diffie and Hellman [1] introduced the concept of digital signa-
ture and that of public key cryptosystem. The RSA system [6] is current-
ly believed to be the most secure scheme for both purposes. A new type
of signature scheme based on the guadratic equation s% + ksg = m (modn)
has been proposed by Ong, Schnorr, Shamir [3]. Here m is the message,

S, and s, are the signature, and k and n are the publicly known key.
The new scheme would be much easier to implement than the RSA-scheme,
but it has been broken by a recent algorithm of Pollard which solves

the equation x2 + k:y2 = m {modn) without factoring n.
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In this paper we consider signature schemes based on more general
polynomial equations modulo n. In particular we extend the original
0SS-scheme from rational integers to algebraic integers. This leads to

a signature scheme based on the quadric equation (m - 2ks +

2
12 521!

+ 4522(d52 + k(s . d522) - m1) =0 (modn),where m, and m, are the

message, 12, S99 and §,, are the signature, and the plblic key con-
sists of the integers k,d,n with 1 £ k,d < n . The private key is the
square root v=k (mod n). Signature verification can be done with 10
multiplications on integers modulo n, signature generation requires 9
multiplications and 1 division modulo n.

All participants of the system may share the (d,n)-part of their

public key provided that the factorisation of n is completely unknown.

2. SIGNATURES BASED ON POLYNOMIAL EQUATIONS

When Alice Jjoins the communication network she publishes a key
consisting of two parts: a modulus n and the integer coefficients of a
polynomial P(s1,...,sd)EIZ[S1,...,sd] with indeterminates Sqs---184"
The modulus n is the product of two large random primes p,g. The facto-—-
rization of n should be unknown, except possibly to Alice. In order to
prevent factoring of n by known factoring algorithms n should be at
least 600 bits long. The coefficients of P are integers in the range
Zn i= {c€Z :0%c<n}. The elements in zn are used as representatives
for the ring Z/nZ of integers modulo n. Typically P will only have a
few coefficients.

The messages m are numbers in Zn. A tuple s = (s .,sd) of num-

1
bers in the same range is a signature for m if it satisfies the equation

(1) P(s1,...,sd) = m (mod n)

Given the coefficients of P and n it is easy to verify Alice's signa-

tures by evaluating P(s ) with a few modular multiplications and

qre+-1Sg
additions.

Unlike the RSA system, signatures are not uniquely associated with
messages. Since the number of possible messages is n while the number
of possible signature tuples is nd, each message has about nd“1 diffe—
rent signatures. However, the probability that a randomly chosen tuple
s = (Sl""’sd) will be a valid signature of a given m is negligible,
and thus the multiplicity of signatures does not imply that they are
easy to find.

The secret that helps Alice solve the equation (1) is an integer

(d,d)-matrix A which modulo n is invertible. If the transformation
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X = As (mod n) transforms P into a polynomial x P'(xz,...,xd) =

1
P(s1,...,sd) {mod n) then Alice can easily solve equation (1). She

picks random values xz,...,xde 25, evaluates
(2) Xy = m/P'(xz,...,xd) (mo§ n)

and transforms

(3) s := A_1§ (mod n)

So Alice can generate signatures of m by choosing random values

KorenerXy and evaluating (2), (3) using a few modular multiplications

and additions and one modular division. If P'(xz,...,xd) is not rela-
tively prime to n then m/P'(xz,...,xd) {mod n) may be not defined, but

if all the factors of n are large Alice is unlikely to choose such values
KoreoerXge

The relationship between messages and signatures are summarized
in the following lemma. Let Z: be the set of numbers in Z%iwhich are
relatively prime to n. Note that Zn represents the set Z/nZ of inte-
gers modulo n, so Z 1s a commutative ring under addition and multipli-
cation modulo n and z < 2%1*15 the group of invertible elements.

LEMMA 1 For every mé¢€ Zh the set of signatures of m is in 1-1
correspondence with the set of values (3) as x

.,X., range over Z%

27 d

and Xy = m/P'(xz,...,xd) (mod nj.

PROOF For every (xz,...,xd)E (Zn)d—1 with P' (x

JreeeiXy) € 7 (2),
(3) clearly define a signature s of m. On the other hand for every sig-
nature s = (51,...,sd) there exists x := As (modn). We have .
P(S1,-..,s ) = x1P'(x2,... xd) = m {mod n), and P’(x ...,xd)EIE follows
from the assumptlon mEEZ Since A is non singular only one value of
Xorewurxy) €2 ) =1 can correspond to each signature. Q.E.D.

REMARKS (l) By using independent random values x Alice

PR S
can choose an arbitrary signature of m with uniform prgbabiliiy distri-
bution, and is not restricted to signatures of some special form.

(ii) If several messages ml are signed with the same KoyreeorXg then
51 = (X1""'Xd) and the signature sl are known fqr each message and A
can be computed from the linear equations x = A§l (modn). Thus Alice

must choose independent random values x se-eXg for each message.

’
How does Alice generate her publiczkey? She first chooses the mo-
dulus n as a large composite number which is difficult to factor. By
using a probabilistic primality testing algorithm on random integers
with at least 300 bits, Alice can find after a few hundred tests two
numbers p and q which are almost certainly primes. The product n of p
and q is easy to compute, but even the fastest known factoring algo-

rithm on the fastest available computer will take millions of years to
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factor it. The generation of n can be done within a few hours on a typi-
cal microcomputer. Such an overnight initialization is acceptable in
most applications, but if the user cannot afford it, there is a faster
alternative: If a trusted third party (the NBS?) computes n and then
erases p and ¢, no one knows the factorization of n and thus everyone
can use it as a standard modulus.

In order to generate the polynomial P, Alice chooses a simple poly-
nomial P'(xz,...,xd) with integer coefficients and then picks a random
integer (d,d)-matrix A. Alice keeps A secret, transforms the polynomial
Xy P'(%5,...,%4q) with x := As (modn) into a polynomial P, P(S,,...sS4)"
= X4 P'(xz,...,xd) (mod n) and publishes the coefficients of the trans-
formed polynomial P. P is no longer linear in any of the variables. The
equation P(s1,...,sd) = m (mod n) is apparently difficult. Alice also
verifies that A is invertible modulo n. If the prime factors of n are
large then singular matrices are unlikely to occur. It is important
that Alice can generate P without knowing the factors of n. All the
participants of the communication network may use the same simple poly~
nomial P'(xz,...,xd) and even the same modulus n (provided that the
factors of n are unknown) and differ only in their choice of A.

The security of the scheme requires to choose particular transfor-
mation matrices A which cannot be easily computed from the coefficients
of P and P'. We choose the polynomial P' and the matrix A so that re-
covering A from the polynomials P and P' is as hard as factoring n.
Since Alice is not restricted to signatures of some special form it is
impossible to obtain information on the secret parameters, A and the
factors of n by analysing her signatures. Also Alice herself may be un-
aware of the factors of n. Since Bob cannot benefit from Alice's sig-
natures and cannot use her method for solving equation (1}, he must come
up with an alternative way of solving this equation. So for each class
of transformations A and for each polynomial P' one must carefully ana-
lyse whether equation (1) is sufficiently difficult for the correspon-
ding polynomials P.

The security of the scheme is based on the difficulty of factoring
n. When the factors p and q of n are known the equation (1) can be solved
efficiently. The probabilistic root finding algorithm of Rabin5 computes

s', E"EEZd such that P(s') = m (mod p) and P(s") = m (mod gq). By the
Chinese remainder theorem s' and s" can be combined to a sclution
s = 0s' + ts" (mod n}. Here ¢ and T are integers
1 (mod p) IO (mod p)
satisfying ¢ = 1 , T
O (mod q) 1 (mod q)
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The binary quadratic scheme: The simplest polynomial equation (1)

appears for d = 2, we transform the equation

(5) X X, = m {mod n)

1
*
using an arbitrary u€ Zn by the linear substitution

s, + u__1s2 (mod n)

X_] := 1
_ _ -1
Xy 17 8y u s, (mod n)} .
This yields Xy %, = sf - u-zsg = m (mod n). So the trivial equation (5)
is transformed into the less trivial polynomial equation
(6) sf + ks% =m (mod n) with k = —u"2 (mod n).

The public key of the corresponding signature scheme consists of n and
k, and the private key is u. A pair (51,32) € (Zn)2 is a valid signature
for m if sf';' + ksg = m (modn). Recovering the private key u from the
public key k requires the computation of V-k (mod n) and thus is as
hard as factoring n.

Unfortunately this case of our signature concept is insecure due
to a recently discovered algorithm of Po.llarci4 which efficiently solves

guadratic equations s2 + k52 = m (modn). Pollard's method does not

1 2
solve general polynomial equations modulo n nor does it extend to sys-

tems of polynomial equations.

3. THE BINARY QUADRATIC SCHEME OVER ALGEBRAIC INTEGERS

The binary gquadratic scheme may still yield a good signature scheme
if we replace rational integers Xq1Xyr84,8,,m by algebraic integers

X1,X2,S1,SZ,M which range over the set

Z := {a+bVdla,b€EZ , O<a,b<n} .

n,d
The set Zn q can play a similar role as the set zn of integers modulo n.
’
There is a natural way of adding and multiplying elements in and:
{a'+b'vd) + (a" +b"Vd) := a+bVvd

with a := a'+a” {(modn) , b :=b' +b" (modn)

(a' +b'Vd) (a” +b"vd) = a +bVd
with a := a'a" + db'b"(mod n) , b := a'b" + a"b'(mod n}.

So all arithmetic operations inZ  ; are done modulo n Z[vd] and in
standard algebraic notation Z_ ; is the ring Z[Vdl/n Z[Vd]. An element

— *
a + bvd is invertible iff a2 - bszZn , and in this case

(a+bvd)~ ! = a' -b'va
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with a' = a(a®-b%a)") (mod n) , b' = b(a®-b%d)” " (mod n). Let
*
/4 c Z be the subgroup of invertible elements.
n,d n,d
LEMMA 2 With the above arithmetic operations Zn a forms a commu-~
* * ’
tative ring with 25 < Zﬁ,d ’ Zn < Zh'd.

In the sequel we let the variables X1,X2,S1,S M range over Z% a
’

2
[ ]
For an arbitrary ue€ ZZn the substitution

-1

X t= §, -1 §
7 1 1 e
=9 2

yields X1X2 = S? + ksg with k := -u_2 {mod n). So given u the equation

(8) x1x2 = M

which can easily be solved for any'b1€Z% a’ is equivalent to the less
r
trivial equation

2 2
(9) S1+kSZ—M.

This observation yields an efficient signature scheme. For key generation
Alice picks a random element u € Z; publishes k := —u'_2 (mod n), and

keeps u secret. For any M Alice can easily solve the equation (9). She
picks}ﬂ Ezi,d at random, computes X, := MX_1 and inverts the linear

2 1
substitution (7)

S1 := (X2 + X1)/2

52 := (X2 - X1)u/2 .

Once k is published, Bob (or anyone else) cannot compute u, and cannot
follow the method of solving equation (9) that Alice is using.

For convenience we write polynomial equations over Zn as systems

d
r
of polynomial equations over Z% . Let

X, = x4, + Vd x, i=1,2

S; = s;q ¢t vd i) i=1,2

M o=m o+ vd m,
with xij’ sij’ m, € Zn . The equation X1 ‘X, = M can be written as
(10) Xqq Xgq ot dx12x22 =m, {mod n)

Xiq Xpo * XyoXoy =m, (mod n) .

The equation Sf + k Sg = M can be written as

2 2 2 2.
syq * ds12 + k(521+ dszz) = m, {mod n)

2(511522 +k 512321) = m, {mod n) .

(11)

Elimination of Sy in the latter equation yields
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Siq = (mz-Zk Sy2 521)/(2 522) {mod n)

Therefore the system of equations (11) is equivalent to the ternary,
quadric equation (12) provided that s

s 2
12721 1

So this equation can be taken as verification condition for the binary

€z
22 n °
2

2 2 2 _
(12) (In2 2k s )T o+ 4522(ds 2+k(sz1+d522) —m1) = 0 (mod n)

quadratic signature scheme over zn a-
’
The signature scheme based on equation (12) consists of the fol-
lowing components:

Key generation

1. choose two random primes p,q so that p-q is difficult to factor, put
n := p'q .

2. pick random integers u,d which are relatively prime to n.

3. publish k := -u°2 (mod n), d, n, and keep u secret.

Messages are pairs (m1,m2) of integers in the range 0O < m,,m, < n ., i.e.

m, My € Zn—O .

Signature verification

A triple (512,521,522) of integers in Zn is a valid signature for the

message (m1,m2) if it satisfies the equation (12)
2 2 2 2 2 _
(m2 2k 512521) + 4 322(d s12+-k(521+ dszz)-m1) =0 {mod n) .

This equation can easily be checked using k,d,n with 10 multiplications,
4 additions/subtractions module n. We do not count the trivial multi-
plication by 4.

Signature generation

(We solve the easy system (10}, and using the private key u we transform
its solution into a solution of (12) by inverting the linear substitu-
tion (7).)

1. pick random elements x11,x12€ Znso that
x31 - dx?2 is relatively prime to n.
m,X - m.X
271 1712
2. Xyy 3% 5 T g {mod n) ,
%11 %12
{m,x - dm X )
3. X := T 2 22 (mod n)
21 x2 _ dxz
11 12

4, Syp i (x22 + x12)/2 (mod n)

(x - X u/2 {(mod n)

21 11)

(x22 - x12) u/2 (mod n)

S22
LEMMA 3 Signature generation can be done with 9 multiplications,

1 division modulo n. (The division by 2 is trivial).
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2
PROQF Compute Xqq7 d Xqqr

tions modulo n. Obviously the rest of the computation can be done with

2 . Cv s
dx12, dmzx12 with only 4 multiplica

S5 multiplications and 1 division modulo n. Q.E.D.
For a message (m1 ,mz) let M := m, +m2\/5 be the corresponding ele-

. . 2 2 * *
ment in Zn,d , Obviously my-dm, € Z iff Mezn’d . For messages (m, smy)
*
with m? - dm2 € Z the above signature procedure generates arbitrary
signatures of (m1 ,mz) with uniform probability dlstrlbut:.on.

1+m \/—EE ,d the set of

signatures of (m.l,m } is in 1-1 correspondence with the set of values

LEMMA 4 For every message (m1 My ) with m

(512,521,522) in step 4, as %11 +x \/d ranges over Zn a-

PROOF The set of signatures of (m1,m2) is in 1-1 correspondence

to the set of solutions (S1,82) of 52 + ksg = M. By the linear trans-~

T
formation (7) the set of solutions (S‘I’S ) of S% + ks

correspondence to the set of solutions (X1’X ) of X

g =Mis in 1-1

1 X2 = M. Since

ME Z n.d these solutions are in 1-1 correspondence with the set of ele-
I

ments X, €z n,d (remember that Xy = x4 \/d(-:z n,d iff x 11 dx12

relatively prime to n). Q.E.D.

is

As a consequence of Lemma 4 messages (m1,m2) for which m? - dmg
is not relatively prime to n should be avoided. We have excluded messages
with m, =0 or m, =0 anyway, see remark 7 (iv),(v). No other message
(m1 ,mz) with gcd(m? —dmg,n) #1,n is likely to occur.

REMARKS 5 The characteristical properties of the original binary
quadratic OSS-scheme remain intact: i) The generation of the keys
u, k := —u2 (mod n), d can be done without knowing the factorization
of n. All public keys may share the (d,n)-part provided that the facto-
rization of n is unknown to all participants of the system. ii) Computing
the private key u from the public key k,n requires to compute V-k (modn),
and thus is as hard as factoring n. iii) The signature scheme is multi-

n

plicative over Z Solutions S!, S. and s7, 8. of

n,d’ 1 T2 1 2
12 12 _ v n2 w2 ~ "
S1 + k52 =M ' S1 + kS =M
yield a solution 51, S2 of S? + ksg = M'M" as
= o t L = Yo " n
S, = STS‘I k5252 , S2 S1S1 k5252
iv) The roles of k,M in the egquation Sf + ks% = M can be interchanged
since Sf + ksé = M is equivalent to (S.]/Sz)2 - MSE2 = -k .

With these remarks the following theorem can be proved in the same
way as its counterpart in [3].
THEQREM 6 Any algorithm for computing u from random signatures

of messages of its choice can be transformed into a probabilistic facto-
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ring algorithm with similar complexity.

PROOF see proof of theorem 2 [31].

REMARKS 7 i)} The theorem can easily be extended to the case of an
algorithm that succeeds for only some of the u-values provided that the
fraction of these u-values is non negligible. ii) In Rabin's signature
scheme an opponent can factor n by analysing the signature of specific
messages. In our scheme the factorization of n and the secret parameter
u cannot be revealed by chosen message attacks. iii) If Bob could com-—
pute one of the xi.—values i,j€{0,1} corresponding to a signature

i,7€{0,1}, he could compute u. For instance given x and Syq¢

117 511

S, .

i3
- -] -

11 = S99 ° 80 sy, (modn). A single xij value

Bob can compute u from x
is thus as hard to compute as u. iv) Messages (m1,m21 with m2 =0 can be
signed without the private key u. It is sufficient to solve

2 2
11 + k S31 = m, {mod n)

by Pollard's algorithm [4]. v) Messages (m1,m2) with m, =0 can also be
signed without the private key u. This easily follows from (iii) and
the multiplicativity of the scheme (remark 5, iii).

THE COMPLEXITY OF SOLVING S2 + k S2 = M over Zn

1 2 d

Pollard [4] solves the equation s? + ksg = m (mod n} by successive-
ly reducing m and k. He reduces m to m' < vk, interchanges m and k, and
continues until both m and k are 1. His basic reduction step uses the
euclidean algorithm over Z.

Tt ksg = M since Z[Vd] is not
euclidean domain provided that d>73 or d <-11. In particular there
exist A, B€ Z[vd] such that IN(A-C*B)! > IN(B)| for all c€z[vdl,
(where N is the norm, N(x + Vdy) = xz-dyz). It is unlikely that the
missing euclidean algorithm for Z[Vd] can be replaced by some other

norm reducing procedure. For large |dl almost all elements A€ Z[Vd] with

Pollard's method does not solve S2

IN{A) | << d are rational integers and these are unlikely to appear in
a general procedure over Z[Vd]l.

The methods for solving s? + ksg = m (mod n) which use the class
group of quadratic form with discriminant -4k, see [3], do not sclve
S1 + k 52 = M. The reason is that equivalence classes of quadratic forms
with coefficients in Z [Vd] cannot be represented in a canonical way by
reduced forms.

The fastest known method for solving S? + ksg
This method becomes infeasible if n is at least 600 bits long.

= M is by factoring n.

The complexity of solving general polynomial equations modulo n is
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an open problem and it may become an important subject for further

cryptographic research.

REFERENCES

Diffie, W. and Hellman, M.: New Directions in Cryptography. IEEE,
IT-22, (1976), 644-654.

. Ong, H. and Schnorr, C.P.: Signatures Through Approximate Represen-

tations by Quadratic Forms. Advances in Cryptology: Proceedings of
Crypto 83. Plenum Publ. New York 1984, 117-132.

Ong, H., Schnorr, C.P., and Shamir, A.: An Efficient Signature Scheme
Based on Quadratic Equations. Proceedings of 16th ACM-Symp. of Theory
of Computing, Washington (1984), p. 208-216.

Pollard, J.M.: Solution of x2 + ky2 s m (mod n), with Application
to Digital Signatures. Preprint 1984.

Rabin, M.0.: Probabilistic Algorithms in Finite Fields. SIAM J. on
Computing 9 (1980), p. 273-280.

Rivest, R.L., Shamir, A. and Adleman, L.: A Method for Obtaining
Digital Signatures and Public Key Cryptosystems. Comm. ACM 21 (1978)
120-126.

Shamir, A.: Identity Based Cryptosystems & Signature Schemes.
Proceedings of Crypto 84.



