
Status Report on Factoring
(At the Sandia National Laboratories)*

James A. Davis, Diane B. Holdridge and Gustavus J. Simmons

Sandia National Laboratories
Albuquerque, New Mexico 87185

Introduction

It is w e l l known that the cryptosecurity o f the RSA (Rivest-Shamir-

Adleman) two key cryptoalgorithm [l] is no better than the composite modulus

is difficult to factor. Except for one special case, the converse statement

is still an open and extremely important question. It is not so well known,

perhaps, that there are several other crypto-like schemes whose performance

is also bounded by the difficulty of factoring large numbers:

signature schemes of Ong-Schnorr [2] , of Ong-Schnorr-Shamir [3] and of

Schnorr [4] , the oblivious transfer channel of Rabin IS] and the subliminal

channel of Simmons [6] to name on ly a few. The point is that the difficulty

the digital

of factoring large integers has become a vital parameter in estimating the

security achievable in many secure data schemes -- and conversely factoring
techniques are potentially a tool for the cryptanalyst if the cryptographer

misjudges the difficulty of factoring a composite number on which he bases

a system.

The Sandia National Laboratories have already fielded several secure

data systems that are dependent on the difficulty of factoring f o r their

security [7,8,9] and at least as many other applications are approaching

* This work performed at Sandia National Laboratories supported by the U. S.
Department of Energy under contract No. DE-AC04-76DP00789.

T. Beth, N. Cot, and I. Ingemarsson (Eds.): Advances in Cryptology - EUROCRYPT '84, LNCS 209, pp. 183-215, 1985.
0 Springer-Verlag Berlin Heidelberg 1985

184

realization. As a result, a concerted research effort was initiated in 1982

in the Mathematics Department at Sandia to define as sharply as possible the

bounds on the computational feasibility of factoring large numbers, using

the most powerful computers available -- as efficiently as possible -- with
the factoring algorithms being carefully matched to the architecture of the

machine on which the algorithm was to be run [lo]. Our primary objective

in this paper will be to present an overview of the advances in factoring

resulting from this research. Later, we shall discuss in detail the mathe-

matical and coding advances themselves.

three-order of magnitude improvement in factoring -- as measured by the
time required to factor a particular size number -- has been achieved by
the Sandia researchers over what was possible (and well benchmarked) a

few years ago. This is a combined effect due in part to a new generation

of computers with much increased computing power and especially due t o

the unique architecture of the Cray family of machines, in part due to

substantial advances in factoring algorithms and finally -- and equally

significant -- in part attributable to the efficiency with which the algor-
ithms have been coded for the specific computers. Our secondary objective

will be to separate out the contributions of these three factors (to fac-

toring progress) in order to both understand how the improvements of the

past three years were achieved as well as to project what the state of

the art in factoring is likely to be 5 to 10 years from now.

Suffice it to say that a roughly

An Overview

The easiest question to ask concerning integer factoring and the

hardest to answer, is; "How large a number is it computationally feasible

to factor using a general purpose factoring routine?" Figure 1 gives one

D l g l t o i n
number t o

b e factored

185

Progress in Factoring

Pro jec ted S a n d l a I L o s AlamOO
Cray X-UP

U o r r l o o n L E r l l l h a r t
F, fmctorod on lllU 3 0 0 / 9 1

3 0 , , . I , . , , , . . . , I
1970 1980 1990

0 4 1 0

Figure 1.

186

a1 go r i t hm

steadily

ing scene

Sandia in

answer showing the record size numbers that were factored as an approximate

function of the year in which the factorization occurred -- over a period

of roughly a decade. The data in Figure 1 were selected as being the most

indicative of the state of the art in factoring at'the time, either because

the factorization was generally acknowledged as a major achievement or

advance or, as in the case of the Cunningham Table Project [ll], because

of the thoroughness with which the benchmark was defined. The reader

should be aware, however, that these data points are virtually impossible

to cross-compare. Within the Sandia data alone the times required to fac-

tor the reported numbers range from 7 . 2 minutes to 32.3 hours, involve

three generations of continuously changing computer codes and were run on

either a CKay 1s or a Cray X-MP computer.

variability. The algorithms were run on widely different machines -- some
in a dedicated computing environment and others in a time sharing mode.

I n some instances, the total time required was reported, in others only

that time required f o r the part of the algorithm that was of primary con-

The other data have even more

At this late date, there is no way that these

zed" to make them directly comparable. Instead,

the best indicator we have of the progress in fac-

decade -- with a strong caution to the reader to
not try to read more into (or from) the figure than this.

The first data point is the landmark factorization of P J , a 39-digit

number, by Morrison and Brillhart [12] using their continued fraction

This algorithm was to become the progenitor of a series of

mproving continued fraction algorithms that dominated the factor-

until Pomerance's quadratic sieve [13] was first implemented at

1982 [lo]. Using an IBM 360/91 over a period of several weeks,

cern to the research.

results can be "normal

we exhibit Figure 1 as

toting during the past

187

Morrison and Brillhart found the necessary number of completely factored

quadratic residues in a total CPU time of only 90 minutes. They don't

report the time required to carry out the Gaussian elimination (in 2700

variables -- primes) but it must have been large.
sions with John Brillhart, it appears that their technique and machine

could have factored numbers in the mid-forty digit range in times compar-

able to the average of the times required €or the two dozen or so factori-

zations that make up the Sandia data points. The error bar on the Morrison

and Brillhart data point therefore reflects a rough attempt to show the

true capability of this factorization technique.

Based on recent discus-

Unquestionably, the most extensive -- and up to date -- compilation of
integer factorizations ever made is the Cunningham Project Table [ll] pub-

lished by the AMS in 1983. As the authors say in the introduction, "The

present tables are now at the limit of what can be done by factoring through

50 digits'I The mid-1981 data point representing this benchmark in Fig-

ure 1 indicates the spread above and below this 50-digit figure accounted

€or by the variation in difficulty of specific numbers. Roughly speaking,

the Cunningham Project Table established a well defined standard of the

computational feasibility of factoring any 50-digit number in at most one

day's computing time. This was the state oE the art in the fall of 1982

when the quadratic sieve in the form originally proposed by Carl Pomerance

[13] was implemented by Davis and Holdridge at Sandia on a Cray 1s. The

Sandia effort was prompted by the recognition by Simmons, Tony Warnock

of Cray Research and Marvin Wunderlich that the Cray's ability to effi-

ciently pipeline vector operations on vectors containing thousands of

elements could be matched to the sieving operation that was the heart Of

the quadratic sieve factoring algorithm. The immediate results were start-

188

ling. A pair of 51 and 52-digit numbers - taken from the composite cofactor
list in the Cunningham Project Table that gave them a recognized certifi-

cate of difficulty - were factored in under two hours. This represented

a speed improvement of better than an order of magnitude on the first

attempt over what had been possible only a year earlier when the Cunningham

Project Table was sent to press. This algorithm, using a very memory effi-

cient Gaussian elimination routine for binary matrices devised by Parkinson

and Wunderlich [16], was round to have a feasible range of 50-58 digits,

i.e., it could factor up to 58-digit numbers in approximately a day's CPU

time.

The next big advance occurred in 1983 when Davis discovered the spe-

cial q variation to the basic quadratic sieve [l o] . This innovation is SO

vital to the Sandia advances, and to the most recent factoring results

shown in Figure 1, that it will be discussed in detail later. We also

give some precise cross-comparisons of the time required to factor numbers

using the quadratic sieve, both with and without the special q variation,

later in this section, but roughly speaking this improvement bought another

order of magnitude improvement in the speed of factoring.

The last two data points in Figure 1 are another factor of six or seven

removed from the points in the error bar for the special q algorithm. This

is due to the optimization of the coding of the special q algorithm for the

Cray -- attributable in large part to an improved search algorithm developed
by Tony Warnock. In addition, Holdridge found that by "unrolling" the

nested loops in the code the running times could be substantially improved.

In other words, the six-fold improvement between the special q case and

the 69 and 71-digit examples is primarily due to the substantially improved

efficiency with which the computers were coded and used.

1 89

The research on factoring at the Sandia National Laboratories has been

proof tested at each stage of algorithm development on numbers that were left

unfactored in [ll] and which were cited as being of either extraordinary

interest or difficulty to factor or both. For example, in [ll], there is a

table of the "Ten 'Most Wanted' Factorizations" that included as the first

two entries the composite cofactors of the only two surviving unfactored

composite numbers from Mersenne's 1640 list; 2211-1 and Z251-l. Since this

list was essentially an open challenge to the factoring community, we have

responded by factoring all ten of them (nine of them for the first time).

In the "shorthand" notation of [ll], the numbers and the vital statistics

of their factorization are shown in Table I. 2,211- C60 denotes the

60-digit composite cofactor of 2211-1, etc. The cofactors themselves are

Table I.

10 Most Wanted Factorizations
- --

CPT Cunningham Sieve Process Program
No. Digits Designation Time (hrs) Time (hrs) Configuration --_---
-I-- - -----------___=--==-=------.--

1
2
3"
4
5
6
7
8
9

60
69
5 4
55
61
7 1
58
53
67

2,211-

2,212+
2,251-

1 0 , 6 4 +
10,67-
10,71-
3 , 1 2 4 +
3,128+
11,64+

22
31.9

.1
4 . 3
1.0
8.75
1.6
5 . 9

1 5

.25

.4

.9

.l

.22

.75

.2

.15

.34
10 55 5,79- -66 .33 sq * This number originally factored by Sam Wagstaff. The times shown for

3 are f o r the Sandia factorization. The other nine were all first
factored at Sandia.

(a) 18.5 hours sieving using basic algorithm obtained 112 needed rela-
tions 3.5 hours using special q's conpleted the sieving.

BQS = Basic Quadratic Sieve (+)

sq = Special q (0)
SGE - Segmented Gaussian Elimination (A)

190

I

1

I

tabulated i n [ll]. Figure 2 plots the total computing time required to

factor these numbers. As already mentioned, there have been three distinct

generations of quadratic sieving algorithms, although refinements and

improvements have occurred steadily in each generation of software. The

+ symbol denotes factorizations made with the original quadratic sieve,
the special g algorithm and , the segmented (partioned matrix) Gaussian

elimination codes that make it possible to handle much larger prime bases

than would otherwise be possible. The 54-digit outlier (2 ,212+) is the

result of factoring a small number using the partitioned matrix code, so

that almost all of the time shown was overhead spent in moving blocks of

the matrix into and out o f memory. It is included f o r completeness, but

/

0 7

I

Figure 2.

191

would have taken roughly the same time to factor using only the special

q algorithm. Incidentally, the approximating curves are simply fits of

(L(n))C where L(n) = e is the bound that most of the

general purpose factoring algorithms seem to obey [13].

v'lognxloglogn

Especially noteworthy is the 58-digit number (8 7 , 3 , 1 2 4 i from [ll])

that was €actored twice; first using the basic quadratic sieve in a time

of 8.78 hours and then again using the special q algorithm in 1.76 hours

with a five-fold improvement in speed. This provides a crisp cross-

comparison of the algorithms since both factorizations were done on the

Cray 1s with codes developed by Holdridge within a very short time span.

Hence, the improvement in this case is directly attributable to the mathe-

matics (special q algorithm). An even more spectacular, but also more

difficult to interpret cross-comparison is possible. In 1131 Pomerance

discusses the benchmark 49-digit number factored by Sam

Wagstaff in 70 hours of computing and projects that it might be possible

by various refinements (such as the early abort technique) to reduce the

(3 ll-1) 11617

running time to as little as 20 hours. The latest generation of Sandia

algorithms factored this number in 4 minutes and 34 seconds: a ratio of

920 to 1 i n computing time! Admittedly, this timing comparison is hard to

interpret since different machines and different factoring algorithms were

used, but the comparison supports our earlier statement that a roughly

three-order of magnitude overall improvement in the speed of factorization

has been achieved. Other comparisons yield similar results.

Twenty-five large numbers 040 digits) have been factored at Sandia --
plus many other smaller numbers for which the overhead obscures the time

actually spent in factoring. Figure 3 shows a least squares fit of (L(n))'

to the data on numbers of at least forty digits for the three generations

of algorithm; marked +, 0 and a s before. Note, however, that in an

192

Figure 3 .

e f f o r t t o make t h e d a t a machine independent , we have p l o t t e d t h e number of

e lementary machine o p e r a t i o n s (s h i f t s , adds , XOR, e t c .) r a t h e r t han t h e

t o t a l t i m e r e q u i r e d t o f a c t o r a number. The curve is t r a n s l a t e d upward

i n F igu re 3 compared t o t h e same curve i n F igure 2 s i n c e t h e Cray X-FIP has

a b a s i c c lock f r e q u e n c y o f 105 HHz compared t o the 80 MHz c l o c k f r equency

f o r t h e Cray lS, s o t h a t t h e e l a p s e d time (F igu re 2) f o r a g iven number of

elementary o p e r a t i o n s on t h e X-MP i s roughly 314 of what i t would be on

t h e 1s. The most obv ious c o n c l u s i o n t o b e drawn from F igure 3 is tha t t h e

Sandia work has - f o r a g i v e n number of machine o p e r a t i o n s -- rough ly

inc reased t h e size of t h e number t h a t can be f ac to red by t h i r t e e n d i g i t s .

This may not sound l i k e much of a n improvement, bu t over t h e range from 40

t o 75 d i g i t s -- e s s e n t i a l l y independent of t h e a lgor i thm used -- f o r each

193

three-digit increase in the size of the number to be factored, the time

required roughly doubles.

fold improvement in factoring resulting from the Sandia work, independent

of the machine. This latter statement assumes that the machine is vectori-

This translates into slightly more than a 20-

zed so that the quadratic sieve can be accommodated efficiently and also

that the memory is organized in such a way that data can be "streamed"

through an arithmetic unit and back into memory, etc., as is needed for

an efficient implementation of a quadratic sieve. The Crays have this

type of architecture, but so does the NEC SX-2, the Fujitsu VP-200 and the

Hitachi S-810 [14,15].

A sort of :sound barrier" in computing is lo1* operations. At present

this is a generally accepted dividing line between what is computationally

feasible and infeasible. Figure 4 , taken from the same data shown in Fig-

d i g i t s

* O 1

I I i
Jan. Jan. Jan. Jan.

82 83 P 4 85

Figure 4 . Size of composite "hard" number

factorable by 10l2 operations.

.. I _ .

194

ures 1 and 3, shows how large a composite "hard" number could be factored

using 10l2 operations with the various generations of Sandia quadratic

sieving algorithms and codes. Again, the roughly thirteen-digit overall

improvement mentioned earlier can be seen to hold 'at 10l2 operations

decreasing to roughly ten digits improvement at 1O1O operations -- the

difference being due to the relative effect of the fixed overhead in the

computation.

The third factor, in addition to the algorithmic improvements and

the advances in the speed and power of the machines on which the algorithms

are run, that has made a major contribution to speeding up the factoriza-

tion of large numbers is the architecture of the Cray family of computers

(or of the Cray-like vectorized machines such as the NEC SX-2, the Fujitsu

W-200 and the Hitachi S-810). We presuppose here that the reader is

either already acquainted with the essential steps in factoring using a

quadratic sieve, or else that he will return to this portion of the paper

after having read the detailed discussion of the algorithm steps. Roughly

speaking there are three major time-consuming steps. One involves the

subtraction o€ the logarithm of a prime number, pi, from on the order of

(l/pi) X 10" locations €or the largest numbers factored.

forming the ring s u m (exclusive OR, or@) of a pair of binary vectors

7-15,000 bits long several million times. The third task, which has often

been described as searching for a needle in a lo9 haystack, is a search

over = 1010 locations looking €or linear dependencies, where we expect on

average 20 "hits" in the 1O1O items searched.

of the computer architecture on the speed of execution -- consider the

first operation described above in which the same quantity, -lop pi, is

to be added to a string of memory locations that can be indexed in such a

way that the locations to which -log pi is to be added differ by a constant

Another requires

To appreciate the impact

195

p i .

conventional architecture in which data is fetched from memory, operated on

in the arithmetic unit (AU) and the result then returned to memory, this

sort of operation is slow.

1 megabit per second effective throughput is possible.

has the ability to "stream" information from memory through the AU and

back into memory for a fixed operation without pausing for fetch, store

or interpret states. As a result, we can carry out this operation,

The total string length is i~ lolo. In a machine of more or less

Programmed optimally on a CDC 7600 only a

The Cray however

where X(pi) is the logarithm of pi, at 1/2 the clock rate of 80 MHz on

the Cray 1s and at the full clock rate of 105 M& on the Cray X-MP.

other words, the architecture alone has accounted f o r a speed up of nearly

forty times (Cray X-MP with 105 MHz clock versus CDC 7600 with a 37 MHz

clock rate) for this type of operation! In order to exploit the capability

to stream information from the memory through the AU and back into memory,

the algorithm must have many long strings on which a fixed operation

needs to be performed.

organized in such a way that this feature of the Crays could be exploited

is what prompted the Sandia research in the first place.

In

The recognition that quadratic sieving could be

The exclusive or operation

A(1) = A (1) @ B(I)

goes at the same rate as the subtraction, i.e., the Cray 1s streams at

1 / 2 X 80 MHz while the Cray X-Mp can stream data at 1 x 105 MHz. The

search operation in either of the Crays has an overhead that only allows

a throughput of 2 /3 of the clock rate, i.e., 213 x 80 MHz for the Gray 1s

196

or 213 X 105 MHz for the Cray X-MP.

In addition to using the ability of the Crays to stream data, Holdridge

did a timing analysis and found that if the major sieving loop was "unrol-

led" that the same computation could be carried out even faster.

As a result of the timing analysis of the sieving code it was also deter-

mined that a great deal of time was spent in searching. Once the sieving is

done those vector entries that have reached a specified limit must be found

and saved. The search, written in Fortran with an "if" statement was not

vectorized by the Cray compiler.

Language (CAL) subroutine which does use the vectorization capability and

is much faster.

The search is now done by a Cray Assembly

The bottom line, when all of these refinements are included and when

one weighs the efficiencies for the various operations with the relative

times spent in carrying out the associated calculation, is that the Cray

1S, running the quadratic sieve, has a throughput (bits of meaningful infor-

mation processed per second) of 114 x 80 MHz while the Cray X-MP achieves

314 x 105 MHz. Both of these figures are quite impressive since they

indicate that the coding is exceptionally taut -- so much so that Cray

scientists have said that these codes come the closest to running the

Crays "flat out" of any codes they know of. The point is that since no

code can have a throughput greater than the clock rate, and since the

throughput with these codes (especially on the X-Mp) is so close to the

clock rate, there is only a marginal improvement possible from further

refinements of the coding -- for the present factoring algorithms. Almost

an order of magnitude of the total advance in factoring achieved at Sandia

is attributable to the efficiency with which the Crays are being used,

i.e., to the tautness of the codes.

We can extrapolate the future of factoring a short distance into the

197

future with relatively high confidence. First, the Cray X-Mp is a dual

processor machine in which the present Sandia code has only used one of

the processors. Preliminary work on splitting up the main parts of the

quadratic sieving calculation so that two processors can be efficiently

employed -- a nontrivial task incidentally -- suggests that it may be pos-
sible to gain a factor of J 1.7 in computing effectiveness by using the

X-MP to its fullest. Using the rule of thumb that doubling the computing

time roughly equates to increasing the size of the number that can be

factored with a fixed amount of work by three digits -- taking advantage
of the dual processor capability of the Cray X-W should make it possible

to factor numbers of 73-74 digits in the same time required to factor the

71-digit number using a single processor. Another way of stating this

result is; with the present code and using the Cray X-MP, 75-digit numbers

should be factorable in roughly a day's computing time.

Looking at the next generation of vectorized machines -- especially
the Cray I1 and also the Fujitsu VP-200 or the NEC SX-2 [14,15], all will

have a 256 million word high-speed memory compared to the four million word

memory on the Cray X-MP used in the research reported here. The Cray I1

has a projected arithmetic capability of 2000 megaflops (millions of float-

ing point operations per second) while the Japanese machines have 533 and

1300 megaflops respectively compared to - 100 megaflops for the Cray X-MP.

Perhaps more significantly for the quadratic sieve algorithm, all have an

improved vectorization capability; 80 K for the SX-2 and 64 K for the VP-200

compared to the 4 R capability of the Cray 1s or 2 x 4K of the Cray X-MP.

All of these factors when combined suggest that the Cray I1 and probably

the Fujitsu V P - 2 0 0 or the NEC SX-2 will be roughly eight to nine times

more effective in factoring using the quadratic sieve than is the Cray

X-MP. This translates into an increase in the size of the numbers that

can be factored of = LO digits. We therefore feel quite confident in pro-

198

jecting that 85-digit numbers will be factorable in a day's time using

the machines that will be available in the next year or so as indicated in

Figure 1.

Beyond that point, we leave it to the reader to draw his own conclu-

sions. It i s unlikely, however, that either of the curves i n Figures 1 or

4 showing recent progress in factoring will suddenly go "flat", but whether

the exponential rate of change will continue is impossible to predict.

What does appear plausible to predict, though, is that it will be feasible

to factor 100 digits by the end of the decade, i.e., by 1990.

Fanciful Factoring

Most general purpose factoring algorithms (continued fraction,

Schroeppel's sieve and the various quadratic sieves) depend for their

success on the following simple observation. In the r i n g of residues

modulo a composite number n, any quadratic residue, y, i.e., a residue

that is the square of some other element in the ring, has at least four

"square roots" -- and perhaps many more depending on the choice of y and
on the prime decomposition of n. If there existed an oracle that when

presented with a quadratic residue, y , would pronounce a square root of y ,

then n could be factored with probability that goes to 1 exponentially

fast. For example, if n - pq, p and q distinct primes, and y = x2 (mod n)

where x has the unique representation x = ap + bq (mod n), where 0 C a < q
and 0 < b < p , then y has the four square roots (2 a)p + (f b)q where we

interpret -a = q-a and -b = p-b. To factor n using the services of the

oracle, choose x = ap + bq (at random) and compute the quadratic residue y

i x2 Z a2p2 + b2q2 (mod n). We, of course, do not know a, p, b or q since

we don't yet know the factorization of n, but we do know x and y .

oracle when presented with y, would with probability 112 pronounce either

y1/2 = ap + bq or y1/2 = (-a)p + (-b)q in which case we learn nothing

The

199

about the factorization of n.

the oracle would pronounce either y1I2 = ap + (-b)q or y1I2 = (-a)p + bq.

In which case the two greatest common divisors:

On the other hand, with probability 112

would be either p and q o r else q and p , respectively, depending on which

root the oracle chose.

All of the general purpose factoring algorithms mentioned cause the

computer to function (ultimately) in the same way as our fancied oracle.

The main difference is that instead of getting back a square root as the

response to a submitted quadratic residue, the algorithm yields a sequence

of intermediate answers, that ultimately amount to one of the oracle's

responses. Just as in the case of the oracle, a quadratic residue, Qi,

is presented to the algorithm -- but the response is not (except in the
rarest of cases) a square root of Qi, but rather the prime decomposition

of Qi, in which some of the prime factors may occur t o an odd power.

Hence it is computationally infeasible to infer a square root of Qi from

the response, since this would be equivalent to being able to factor n.

If after sufficiently many responses, however, a subset of the Q ' s can be

found for which each of the primes that has occured as a factOK in some

one of the Q's has occurred an even number of times in all, then we are

able to effectively recreate one of the oracle's responses. Since the

product of the Q's is a quadratic residue of a root that we know and the

square root of the product of the primes is trivially the product of each

of the primes raised to half of its even exponent, it is also feasible to

calculate a square root. Just as in the case of the oracle, when = pq

there is only a 50-50 chance that this will lead to a factorization of n

with comparable probabilities for other composite n, but this is the essen-

tial notion underlying the various factoring schemes.

200

Quadratic Sieving: Plain

Given an odd number, n, to be factored, the basic quadratic sieving

scheme [13] calcdates a sequence of (relatively) small quadratic residues

where m = [A].
A. It is important to keep Q(x) small since the algorithm attempts to

factor Q(x) over a prescribed -- but restricted -- set of primes. This

set of possible factors of Q(x) consists of precisely those primes for

which n is a quadratic residue, i.e., 2 and the odd primes, p, for which

the Legendre symbol (n/p) = 1. Fortunately, the Legendre symbol is easy

to calculate in a manner similar to the Euclidean algorithm for finding

the greatest common divisior, so that it is computationally easy to find

the t-1 smallest odd primes, pi, f o r which (n/pi) = I.

elements (-1, 2 , pi) we shall refer to as the factor base. In order for

the algorithm to succeed, we must find sufficiently many quadratic residues,

Q(x), that factor completely into factors in the factor base so that it is

possible to find some subset of the Q(x) among which the prime factors

have all occurred an even number of times. The justification for referring

to the procedure as a sieve is now easy to see. If palQ(x) for some x,

then pal(Q(x ? hpa), h = 0,1,2, ..., hence the division of the resulting
sequence of quadratic residues can be performed by a sieve-like operation

at argument values indexed in an arithmetic progression with spacing of

pa. One of the primary reasons for the speed of the quadratic sieving

algorithm is that instead of having to carry out multiple precision trial

divisions as is required in some of the other general purpose factoring

algorithms, we can use single precision subtraction of approximate logar-

ithms on the Q(x fhp=), i-e., at only those positions where it is

If 1x1 < B and 8 << &, then Q(x) will be "close" to

The set of t+l

201

already known that pa is a divisor.

Since we must ultimately be able to combine a subset of the factored

residues by multiplication to form a perfect square, i.e., to simulate a

response by the oracle, we need to find a linear combination of the expon-

ents for the primes appearing in the various factorizations such that the

sum is even in each entry (for each prime).

chance of finding such a dependency we should have approximately as many

completely factored residues as we have primes in the factor base.

might conclude from this, that t should be small. However, if we take t

to be too small, then a given residue is not likely to factor.

other hand, if we take t to be too large, we spend more time sieving and

will have to find many more factorizations in order to be able to find a

linearly dependent subset. It is clear, though, that qualitatively speak-

ing as the magnitude of n increases, the number of entries, t, in the

factor base should also increase. If one had no storage constraints, it

would be possible to optimize the size of the factor base in order to

minimize running time. In fact Wunderlich has analyzed, partly theoreti-

cally and partly empirically, the optimum size of the factor base as a

function of the size of n, but the conclusion is that this optimum is SO

large that using a t of this size would result in an impractically large

matrix even for the Cray X-MP; hence, we simply use as large a factor base

as we can accommodate.

In order to have a reasonable

One

On the

A detailed discussion of the coded implementation of quadratic sieves

is inappropriate to the objectives of this paper, however, it is necessary

to understand the essential steps involved in using sieves for factoring

in order to appreciate why and how the Cray machines can be so well matched

to the algorithm.

X, to the related congruences

For the Q(x) defined in (l), we wish to find solut%OnS,

202

for pi an element in the factor base.

precisely when (n/pi) = 1, piIn or pi = 2 .

solutions, which are usually represented as Ail and Bil = -(Ail + 2m) (mod p i) .

The sieving process depends on the fact that if we had a list of consecu-

tive values of Q (x) indexed by x, that for all indices x = A i l t hpi and

x = Bil C hpi the associated Q (x) would be divisable by pi. The sieving

procedure consists of dividing out (effectively) pi from only these Q (x)

while leaving all other Q(x) unaffected. This requires two sievings of

the array per solution to (2) -- but as we shall see, the whole procedure
can be implemented very efficiently.

As already remarked (2) has solutions

If (n/pi) = 1 then (2) has two

As a matter o f fact, we actually wish to solve a slightly more general

version of (2)

Q(x) G 0 (mod Pj) (3)

since the smaller primes may occur to some power > 1 in the factorization
of Q (x) over the factor base. We therefore choose a bound L and sieve €or

all pi < L where pi is in the factor base.

to be the length of one sieving block (8 x lo5 on the Cray IS).

at least one successful division per prime power per sieving interval.

For each odd prime pi in the factor base and each exponent j such

We have generally taken L

This gives

that pg < L compute and save the two integers Aij and Bij, that are

obvious generalizations of the Ail and Bil defined in connection with

(2) .

and Bij = -(Aij + 2m) (mod pg) is its paired solution.

addresses for sieving are stored along with the associated weight log pi-

In the same way that Q(x) was sieved for pi, we sieve at x = Aij 4 hp]

and x = Bij C hpj by subtracting the weight log pi, i 2 1.

Aij is the least nonnegative residue (mod pj) that satisfies (3)

These starting

If 11 is

203

the highest power of p i that divides Q(x) for some particular argument

x and pi < L, then log pi w i l l be subtracted from Q(x) precisely Q times

as it should be by this procedure.

R

The prime 2 , of course, has every odd integer as a quadratic residue

but x2 5 n mod 4 has a solution Lf and only if n E 1 mod 4 .

k > 3 , x2 I n mod 2k has solutions if and only If n : 1 mod 8.

indfces for sieving with powers of 2 must be chosen in a somewhat dii-

ferent fashion depending on the residue class of n mod 8. Following a

suggestion of Pomerance, these sieving parameters are assigned as follows:

A l s o for

Thus, the

In all cases

A 1 1 5 (lm) (mod 2)

A 1 2 , B11, B12 undefined

The other values of A l j , B 1 j must be treated as three distinct cases:

1) n E 1 mod 8

B R
2

For j = 3 , 4 , . . . , A, - < 2 < B, Alj is chosen such that

Blj 5 -(A1, + 2m) (mod 2 j) .

A11 is assigned weight 3 log 2 .

have weight log 2 .

A l l other defined A i j , B i j

2) n Z 3 mod 4

A11 is assigned weight log 2 . Other A l j , B 1 j are undefined.

3) n = 5 mod 8

A 1 1 is assigned weight 2 log 2 . Other A l j , B l j are undefined-

204

In sieving, start from the origin (x = 0) and sieve in both positive

and negative directions until approximately t of the Q(x) have factored

completely over the factor base. Because of some overhead In the initial-

izing of arrays and the pipelining capability of the Cray's, we sieve on

intervals which are as large as possible, say of length k, [O,k), [-k,O),

[k,Zk), ... : k = 765,000 on the Cray 1s and 1.5 x 106 on the Cray X-MP.

In order to be able to carry out the factorization by subtraction, we

need to first fill the arrays with approximate (single precision) values of

loglQ(x)l, x E [ak,(.Wl)k).

these logarithms are taken as constant in a given sieving interval. When an

array has been initialized in this way, we sieve on p j by subtracting the

assigned weight (usually log pi as discussed above) from each log Q(x) in the

arithmetic progression of indices

After the first positive and negative blocks,

x = Aij and x = Bij 2 hp2

and in the sieving interval [kl, k(kl-1)).

When the sieving procedure I s completed for a given block, the con-

tents remaining in each location are compared with log pt:

largest prime in the factor base.

Indicate the residues corresponding to these locations have 'been factored

entirely into the primes in the factor base and these addresses are stored.

Occasional false alarms due to approximations are eliminated later. Notice

that very little multiple precision arithmetic is needed. The sieving

procedure is repeated block-by-block until the desired number of Q ' s have

been found that factored completely over the factor base. Once this has

been done, it should be possible to find a subset of the Q's among which

each of the primes has occurred an even number of times in total. The

where pt is the

Values that are smaller then log pt

205

problem of finding such a subset can best be treated as a problem of find-

ing a linear dependency among vectors over GF(2).

which Q(xi) factored completely over the factor base as indicated by the

entry being less than l o g pt, Q(xi) is now actualiy factored by dividing

out the factors in the prime base to get

For each address x i at

with which we associate a binary, t+l element, vector Vi = (vij) where

vij = 1 if q j is odd and 0 otherwise. This results in a roughly t x t

binary array, in which all of the essential information concerning the

factorization of each Q(xi) is stored in t+l bits, or 2-6(t+1) words

in the Cray. Now we need to find a subset, S, of the Vi such that

@Vi = 4 where @ denotes exclusive OR and I$ denotes the zero vector.
S

This is a straightforward problem in Gaussian elimination over GF(2).

We use an improved version of a code developed by Parkinson and Wunderlich

for this part of the calculation [161.

wand z are calculated from

w = l-I (x+m)
S

where

Once such a subset S is found, and

(mod n)

and Q(x) E S .
and

+Vi j (mod n)
t

- 2 : n n p j
j = O S

if w f 2 z, n can be factored by calculating the greatest common divisors

(w+z, n) and (w--2, n) ,

206

X

n+n
Q(x)

both of which will be proper divisors of n.

is a prime and that the procedure will have to be iterated to eventually

obtain the prime decomposition of n, however the factor base remains the

same and the factorizations of the Q(x) have already been done, so that

only the end calculation would need to be repeated with some other linear

dependent subset.

It may be the case that neither

1 2 3 4 5 6 7 8 9
72 73 74 75 76 77 78 79 80

115 260 407 556 707 860 1015 1172 1331

For Example

Since this has been -- unavoidably -- a rather lengthy discussion, we
illustrate the basic quadratic sieve factoring algorithm using a s m a l l

example.
--

Let n = 37.137 = 5069, so that m = [&069] = 71.

This example was "cooked" so as to have many small primes in the factor

base, i.e., 5069 is a quadratic residue of 5,7,11 and 13, hence the factor

base for t = 5 consists of -1,2,5,7,11,13.

First 5069 5 (mod 8) , so that Z21Q(O 2 2h) and no other values of

Q(x) are divisable by a power of 2 from the earller discussion of A1j and

B 1 j .

that R21 = -(l + 2m) 5 -3

etc. Similar results hold f o r p = 7, 11 and 13. Table I1 shows the

Similarly, It is easy to show that for p2 = 5, A21 = 1 and hence

2 (mod 5). Thus 51Q(1 2 5h) and 51Q(2 ? 5h),

Table I1

11 22 7 22.5 5.7 22 113
Residual 37 139 101 43 29 293

-4 -5 -6 -7 -8
67 66 65 64 63

-28 -169 -445 -580 -713 -84t -973 -1100

-1 .22 .5 -1 -1.22 - 1 - 7 -1*22*52-11
a9 29 713 211 139 Resldual

(23.31)

shows the quadratic residues Q (x) €or -8 < x < 9, six of which factor com-

pletely over the factor base.

which sieving is based is easy to see.

vis of the form.

The periodic appearance of the factors on

The corresponding binary matrix

-1 2 5 7 11 13

1
1 1

1 1

1

1 1 1

1 1

Three subsets of the Vi sum (exclusive OR) to 4:

The relationship in (a) corresponds to having presented the quadratic

residue 3625 to the oracle:

3625 E Q(O)Q(-l)Q(-2)Q(-8) (mod 5069)

3 (71)2(70)2(69)2(63)2 (mod 5069) .

I n this case the algorithm (oracle) returns the result that

z E 23-5.7.11.13 E 4557 (mod 5069)

while we can calculate

w Z 71.70.69.63 G 512 (mod 5069)

which tells us nothing whatsoever about the factorization of n, since

4557 -512 (mod 5069) .

208

If however we use either of the other two linear dependencies, we have:

corresponding to b;

80-70.63 $ t 2*5*112*13 , (mod 5069)

3039 f ? 523 (mod 5069)

and hence

(3039 + 523, 5069) = 137

(3039 - 523, 5069) = 37 .

While corresponding to c;

80-71-69 $? 22.7*112 (mod 5069)

1067 f ? 3388 (mod 5069)

and hence

(3388 + 1607, 5069) = 37

(3388 - 1607, 5069) = 137

either of which leads to the factorization of n.

It is this "plain" quadratic sieve factoring algorithm that was first

implemented at Sandia, with the results documented in earlier portions of

this paper. In attempting to use this technique to factor numbers larger

than 57 to 58 digLts, it was found that as the sieving interval became

large enough to find J t residues that factored completely that the mag-

nitudes of the quadratic residues to be factored themselves became pro-

hibitively large. Eventually the frequency with which a quadratic residue

could be completely factored over the prime base became so small that the

sieving times were intolerable. For the largest numbers factored, we

were examining many tens of milllons of residues to find even one complete

factorization.

209

Quadratic Sieving: Fancy

If it is the case that after all of the prime factors from the prime

base have been factored out of a quadratic residue,

2 the residual factor, q, is bounded by p t < q < pt, then q is necessar-
ily a prime. Use of these "large" primes in the factorization by simply

adding them to the prime base has been suggested and implemented [13],

since if two quadratic residues, Q(x1) and Q(x2) can be found such that

and

then

i.e., a quadratic residue that can be factored over the prime base can be

constructed.

Although this approach, known as the large prime variation, does

improve the performance of the algorithm over the "plain" quadratic sieve,

the improvement isn't great enough to asymptotically make any difference.

The reason that one only gets a marginal improvement from augmenting the

prime base with a large prime is that for all intents and purposes we are

randomly generating the quadratic residues -- at least so for as their

divisability by a particular prime is concerned. Therefore the probability

210

that we will find another quadratic residue, Q(x'), - by sequentially

indexing on x -- such that
'1 I Q(x' 1

Is l/q per trial, which is a very small quantity. If instead of simply

searching for a Q(x') such that qlQ(x'), we could systematically generate

a new sequence of Q's, such that qlQ(x), and i n which Q(x)/q is small,

then we could recover the same comparatively high probability that the

resulting quotients would completely factor over the factor base that we

had f o r Q(x) when x, and the Q(x), were small. This is the essential idea

behind Davis' special q variation or "quadratic sieving; fancy."

Assume that we have found in the regular quadratic sieving an x f o r

which

2 where pt < q < pt.
A candidate for such an x is found when the quantity remaining in one

of the indexed entries after the sieveing is completed lies between log pt

and 2 log pt. If by chance some of these candidate Q(x)'s actually factor

over the factor base because of large prime powers that were not considered

in the orlginal sieving, they are identiEied later and included among the

complete factorizations. I f q is actually prime, which is almost always the

case, then note that:

Q(x 2 hq) = (x ?: hq + m) - n = Q(x) C 2hq(x + m) + h2q2 ,

where each term on the right is divisible by q, and the magnitude Q(x + hq)/q

is essentially that of Q(h), i.e., Q(x

then form subsequences of residues starting at x and at -(x + 2m) (mod q)

hq) w 2hm for x << &. We can
4

21 1

whose magnitudes are conparable to those of Q(x) at the start of the orig-

inal sieve.

plain quadratic sieve.

special q ' s is that the arguments may become larger than single precision

words in the computer. We overcame this by using the pairs (x,h) t o repre-

sent x + hq and thus temporarily avoid multiprecision operations.

The sieving on the subsequences is done exactly as in the

One problem that may be encountered when using

These special q's are relatively easy to find compared to finding

complete factorizations. Thus in order to keep reduced residues "small",

for each special q we sieve the subsequence for only a short interval:.

typically for a few blocks.

plete factorization of a quadratic residue contains the factor q, which can

be eliminated before going to the Gaussian reduction by combining pairs of

factorizations to get quadratic residues in which q occurs an even number of

times.

When dealing with a single special q any com-

The sieving property is not dependent on the primality of the divisor,

q, SO why require the special q ' s to be prime? This is to prevent "colli-

sions" between special q subsequences; that is, to prevent the same factor-

ization being generated by two subsequences.

pt > q1 > 92 > pt, then we would have q1'q21Q(x).
not have passed the factorization criterion in the first place.

If qllQ(x) and qzlQ(x) and

2 But then Q(x) could

The special q modification introduced a few complications to the

computation such as multiprecision arguments, and required writing a new

computer code, but the increased capability was dramatic. The bottom line

is that the special q .Jariation enabled factorization of 63-64 digit

integers in times comparable to those required by the original sieve to

factor 55-56 d i g i t s . Furthermore, the relatively constant success rate

for complete factorizations within the subsequences enables an accurate

212

xo - 1 xo L -(1-2m) 1 - 5 (mod 23)
_____ _ _ - _______-

2 -2 -1 0 1 2 -2 -1
26 4 9 72 95 118 20 43 66 89 112

-191 -116 5 172 385 -203 -140 -31 124 325

0 1

-1 -1.22 5 22 5-7.11 -1'7 -1.22.5.7 -1 2 2 52.13
191 29 43 29 31 31

early estimation to be made of how much computing time will be required

for a given factorization.

Examining the residuals in Table I1 we see that 23, 29 and 31 are

all candidate special 9 ' s . We let q = 23 be the special g in the example

used earlier. Table 111 shows the resulting quadratic residues S, based

s2

SO
T-1
T2

Table 111

1 1 1 1
1 1

1 1 1 1

1 1

Sieve on special q = 23

Q'(x) = Q(x0 + xq) = (xo + xq + m) - n 2

X

xo + xq + m
Q' (x) /s

Factors from base
Residual

SX

on xo = 1 and T, based on the paired xo Z -(1-2m) 5 -5 (mod 23) for

1x1 < 2.

by 2 3 .

FOUK residues factor completely over the prime base -- extended

-1 2 5 7 11 13 23

Eliminating 23 by multiplying each row by the first we get;

213

-1 2 5 7 11 1 3

Referring to Table 11, we see that

From (a) we find

and

where

w = 71-63.118.72 z 315 (mod 5069)

z = 2 2 * 5 2 * 7 * 1 1 5 4754 (mod 5069)

w z -z (mod 5069) .

Similarly from (b) we find

and

w = 70.69-118'72 3 2125 (mod 5069)

z = 2 * 5 * 7 - 1 1 * 1 3 * 2 3 f 2125 (mod 5069)

neither of which tells us anything about the factorization of n. On the

other hand, from (c)

and

w = 70 .71*80-118*72 E 2655 (mod 5069)

z = 2 .5*7 .112 .13*23 : 3099 (mod 5069)

214

where w f 2 z. Hence

and

(3099 + 2655, 5069) = 137

(3099 - 2655, 5069) = 37 .

One cannot expect such a small example to illustrate the advantages

of using special q's -- although the range of the parameters i s slightly

smaller in the example with the special q than without.

References

1.

2.

3.

4 .

5.

6.

R. Rivest, A. Shamir and L. Adleman, " A Method for Obtaining Digital Signa-

tures and Public-key Cryptosystems," Comun. ACM 21, 2 (Feb. 1978), 120-126

H. Ong and C. P. Schnorr, '*Signatures through Approximate Representa-

tions by Quadratic Forms," Proceedings of Crypto 83, Santa Barbara, CA,

August 21-24, 1983, to be published by Plenum Press.

H. Ong, C. P. Schnorr and A. Shamir, "An Efficient Signature Scheme

Based on Quadratic Equations," to appear Proceedings of 16th Symposium

on Theory of Computing, Washington D.C., April 1984.

C. P. Schnorr, "A Cubic OSS-Signature Scheme," private communication,

May 1984.

S. Even, 0. Goldreich and A. Lempel, "A Randomized Protocol for Signing

Contracts," in Advances in Cryptology, Proceedings of Crypto 82, Ed. by

David Chaum, Ronald L. Rivest and Alan T. Sherman, Plenum Press, New

York (1983).

G. J. Simmons, "The Prisoners' Problem and the Subliminal Channel,"

Proceedings of Crypto 83, Santa Barbara, CA, August 21-24, 1983, to

be published by Plenum Press.

7.

8.

9.

215

P. D. Merillat, "Secure Stand-Alone Positive Personnel Identity Verifi-

cation System (SSA-PPIV)," Sandia National Laboratories Tech. Rpt.

SAND79-0070 (March 1979).

G. J. Simmons, "A System for Verifying User Identity and Authorization

at the Point-of-Sale or Access," Cryptologia, Vol. 8, No. 1 (January,

1984), pp. 1-21.

G. 3 . Simmons, "Verification of Treaty Compliance -- Revisited,"
Proceedings of the 1982 Symposium on Security and Privacy, Oakland,

CA (April 25-27, 1983), pp. 61-66.

10. J. A. Davis and D. B. Holdridge, "Factorization Using the Quadratic Sieve

Algorithm," Sandia National Laboratories Tech. Rpt. SAND83-1346 (Dec. 1983)-

11. J. Brillhart, D. 8. Lehmer, J. L. Selfridge, B. Tuckerman and S. S.

Wagstaff, Jr., Factorizations of bn 2 1 b = 2, 3, 5 , 6, 7, 10, 11, 12

up to Righ Powers," AMS Contemporary Mathematics, Vol. 22 (1983).

12. M. A . Morrison, J. Brillhart, "A Method of Factoring and the Factor-

ization of F7," Math. Comp. 29 (1975), 183-205.

13. C. Pomerance, "Analysis and Comparison of Some Integer Factoring

Algorithms," in Number Theory and Computers, Ed. by H. W. Lenstra, Jr.,

and R. Tijdeman, Math. Centrum Tracts, No. 154, Part I, Amsterdam

(1982), pp- 89-139.

R. 8. Mendez, "The Japanese Supercomputer Challenge," SIAM N e w s , Vol- 17,

No. 1 (January 1984), pp. 1 and 5.

14.

15. R. H. Mendez, "Benchmarks on Japanese and American Supercomputers --
Preliminary Results," IEEE Trans. Comp, Vol. C-33, No. 4 (April 1984).

pp. 374-375.

16. D. Parkinson, M . C. Wunderlich, "A Memory Efficient Algorithm for

Gaussian Elimination over GF(2) on Parallel Computers," private com-

munication (Feb. 1983).

