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Introduction 

It is w e l l  known that the cryptosecurity o f  the RSA (Rivest-Shamir- 

Adleman) two key cryptoalgorithm [l] is no better than the composite modulus 

is difficult to factor. Except for one special case, the converse statement 

is still an open and extremely important question. It is not so well known, 

perhaps, that there are several other crypto-like schemes whose performance 

is also bounded by the difficulty of factoring large numbers: 

signature schemes of Ong-Schnorr [ 2 ] ,  of Ong-Schnorr-Shamir [3 ]  and of 

Schnorr [ 4 ] ,  the oblivious transfer channel of Rabin IS] and the subliminal 

channel of Simmons [6] to name on ly  a few. The point is that the difficulty 

the digital 

of factoring large integers has become a vital parameter in estimating the 

security achievable in many secure data schemes -- and conversely factoring 
techniques are potentially a tool for the cryptanalyst if the cryptographer 

misjudges the difficulty of factoring a composite number on which he bases 

a system. 

The Sandia National Laboratories have already fielded several secure 

data systems that are dependent on the difficulty of factoring f o r  their 

security [7,8,9] and at least as many other applications are approaching 
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realization. As a result, a concerted research effort was initiated in 1982 

in the Mathematics Department at Sandia to define as sharply as possible the 

bounds on the computational feasibility of factoring large numbers, using 

the most powerful computers available -- as efficiently as possible -- with 
the factoring algorithms being carefully matched to the architecture of the 

machine on which the algorithm was to be run [lo]. Our primary objective 

in this paper will be to present an overview of the advances in factoring 

resulting from this research. Later, we shall discuss in detail the mathe- 

matical and coding advances themselves. 

three-order of magnitude improvement in factoring -- as measured by the 
time required to factor a particular size number -- has been achieved by 
the Sandia researchers over what was possible (and well benchmarked) a 

few years ago. This is a combined effect due in part to a new generation 

of computers with much increased computing power and especially due t o  

the unique architecture of the Cray family of machines, in part due to 

substantial advances in factoring algorithms and finally -- and equally 

significant -- in part attributable to the efficiency with which the algor- 
ithms have been coded for the specific computers. Our secondary objective 

will be to separate out the contributions of these three factors (to fac- 

toring progress) in order to both understand how the improvements of the 

past three years were achieved as well as to project what the state of 

the art in factoring is likely to be 5 to 10 years from now. 

Suffice it to say that a roughly 

An Overview 

The easiest question to ask concerning integer factoring and the 

hardest to answer, is; "How large a number is it computationally feasible 

to factor using a general purpose factoring routine?" Figure 1 gives one 
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answer showing the record size numbers that were factored as an approximate 

function of the year in which the factorization occurred -- over a period 

of roughly a decade. The data in Figure 1 were selected as being the most 

indicative of the state of the art in factoring at'the time, either because 

the factorization was generally acknowledged as a major achievement or 

advance or, as in the case of the Cunningham Table Project [ll], because 

of the thoroughness with which the benchmark was defined. The reader 

should be aware, however, that these data points are virtually impossible 

to cross-compare. Within the Sandia data alone the times required to fac- 

tor the reported numbers range from 7 . 2  minutes to 32.3 hours, involve 

three generations of continuously changing computer codes and were run on 

either a CKay 1s or a Cray X-MP computer. 

variability. The algorithms were run on widely different machines -- some 
in a dedicated computing environment and others in a time sharing mode. 

I n  some instances, the total time required was reported, in others only 

that time required f o r  the part of the algorithm that was of primary con- 

The other data have even more 

At this late date, there is no way that these 

zed" to make them directly comparable. Instead, 

the best indicator we have of the progress in fac- 

decade -- with a strong caution to the reader to 
not try to read more into (or from) the figure than this. 

The first data point is the landmark factorization of P J ,  a 39-digit 

number, by Morrison and Brillhart [12] using their continued fraction 

This algorithm was to become the progenitor of a series of 

mproving continued fraction algorithms that dominated the factor- 

until Pomerance's quadratic sieve [13] was first implemented at 

1982 [lo]. Using an IBM 360/91 over a period of several weeks, 

cern to the research. 

results can be "normal 

we exhibit Figure 1 as 

toting during the past 
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Morrison and Brillhart found the necessary number of completely factored 

quadratic residues in a total CPU time of only 90 minutes. They don't 

report the time required to carry out the Gaussian elimination (in 2700 

variables -- primes) but it must have been large. 
sions with John Brillhart, it appears that their technique and machine 

could have factored numbers in the mid-forty digit range in times compar- 

able to the average of the times required €or the two dozen or so factori- 

zations that make up the Sandia data points. The error bar on the Morrison 

and Brillhart data point therefore reflects a rough attempt to show the 

true capability of this factorization technique. 

Based on recent discus- 

Unquestionably, the most extensive -- and up to date -- compilation of 
integer factorizations ever made is the Cunningham Project Table [ll] pub- 

lished by the AMS in 1983. As the authors say in the introduction, "The 

present tables are now at the limit of what can be done by factoring through 

50 digits ....'I The mid-1981 data point representing this benchmark in Fig- 

ure 1 indicates the spread above and below this 50-digit figure accounted 

€or by the variation in difficulty of specific numbers. Roughly speaking, 

the Cunningham Project Table established a well defined standard of the 

computational feasibility of factoring any 50-digit number in at most one 

day's computing time. This was the state oE the art in the fall of 1982 

when the quadratic sieve in the form originally proposed by Carl Pomerance 

[13] was implemented by Davis and Holdridge at Sandia on a Cray 1s. The 

Sandia effort was prompted by the recognition by Simmons, Tony Warnock 

of Cray Research and Marvin Wunderlich that the Cray's ability to effi- 

ciently pipeline vector operations on vectors containing thousands of 

elements could be matched to the sieving operation that was the heart Of 

the quadratic sieve factoring algorithm. The immediate results were start- 
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ling. A pair of 51 and 52-digit numbers - taken from the composite cofactor 
list in the Cunningham Project Table that gave them a recognized certifi- 

cate of difficulty - were factored in under two hours. This represented 

a speed improvement of better than an order of magnitude on the first 

attempt over what had been possible only a year earlier when the Cunningham 

Project Table was sent to press. This algorithm, using a very memory effi- 

cient Gaussian elimination routine for binary matrices devised by Parkinson 

and Wunderlich [16], was round to have a feasible range of 50-58 digits, 

i.e., it could factor up to 58-digit numbers in approximately a day's CPU 

time. 

The next big advance occurred in 1983 when Davis discovered the spe- 

cial q variation to the basic quadratic sieve [ l o ] .  This innovation is SO 

vital to the Sandia advances, and to the most recent factoring results 

shown in Figure 1, that it will be discussed in detail later. We also 

give some precise cross-comparisons of the time required to factor numbers 

using the quadratic sieve, both with and without the special q variation, 

later in this section, but roughly speaking this improvement bought another 

order of magnitude improvement in the speed of factoring. 

The last two data points in Figure 1 are another factor of six or seven 

removed from the points in the error bar for the special q algorithm. This 

is due to the optimization of the coding of the special q algorithm for the 

Cray -- attributable in large part to an improved search algorithm developed 
by Tony Warnock. In addition, Holdridge found that by "unrolling" the 

nested loops in the code the running times could be substantially improved. 

In other words, the six-fold improvement between the special q case and 

the 69 and 71-digit examples is primarily due to the substantially improved 

efficiency with which the computers were coded and used. 
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The research on factoring at the Sandia National Laboratories has been 

proof tested at each stage of algorithm development on numbers that were left 

unfactored in [ll] and which were cited as being of either extraordinary 

interest or difficulty to factor or both. For example, in [ll], there is a 

table of the "Ten 'Most Wanted' Factorizations" that included as the first 

two entries the composite cofactors of the only two surviving unfactored 

composite numbers from Mersenne's 1640 list; 2211-1 and Z251-l. Since this 

list was essentially an open challenge to the factoring community, we have 

responded by factoring all ten of them (nine of them for the first time). 

In the "shorthand" notation of [ll], the numbers and the vital statistics 

of their factorization are shown in Table I. 2,211- C60 denotes the 

60-digit composite cofactor of 2211-1, etc. The cofactors themselves are 

Table I. 

10 Most Wanted Factorizations 
- -- 

CPT Cunningham Sieve Process Program 
No. Digits Designation Time (hrs) Time (hrs) Configuration --_--- 
-I-- - -----------___=--==-=------.-- 

1 
2 
3" 
4 
5 
6 
7 
8 
9 

60 
69 
5 4  
55 
61 
7 1  
58 
53 
67 

2,211- 

2,212+ 
2,251- 

1 0 , 6 4 +  
10,67- 
10,71- 
3 , 1 2 4 +  
3,128+ 
11,64+ 

22  
31.9 

.1 
4 . 3  
1.0 
8.75 
1.6 
5 . 9  

1 5  

.25 

.4 

.9 

.l 

.22 

.75 

.2 

.15 

.34 
10 55 5,79- -66 .33  sq * This number originally factored by Sam Wagstaff. The times shown for 

3 are f o r  the Sandia factorization. The other nine were all first 
factored at Sandia. 

(a) 18.5 hours sieving using basic algorithm obtained 112 needed rela- 
tions 3.5 hours using special q's conpleted the sieving. 

BQS = Basic Quadratic Sieve (+) 

sq = Special q (0) 
SGE - Segmented Gaussian Elimination ( A )  
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I 

1 

I 

tabulated i n  [ll]. Figure 2 plots the total computing time required to 

factor these numbers. As already mentioned, there have been three distinct 

generations of quadratic sieving algorithms, although refinements and 

improvements have occurred steadily in each generation of software. The 

+ symbol denotes factorizations made with the original quadratic sieve, 
the special g algorithm and , the segmented (partioned matrix) Gaussian 

elimination codes that make it possible to handle much larger prime bases 

than would otherwise be possible. The 54-digit outlier (2 ,212+) is the 

result of factoring a small number using the partitioned matrix code, so 

that almost all of the time shown was overhead spent in moving blocks of 

the matrix into and out o f  memory. It is included f o r  completeness, but 

/ 

0 7  

I 

Figure 2. 
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would have taken roughly the same time to factor using only the special 

q algorithm. Incidentally, the approximating curves are simply fits of 

(L(n))C where L(n) = e is the bound that most of the 

general purpose factoring algorithms seem to obey [13]. 

v'lognxloglogn 

Especially noteworthy is the 58-digit number ( 8 7 ,  3 , 1 2 4 i  from [ll]) 

that was €actored twice; first using the basic quadratic sieve in a time 

of 8.78 hours and then again using the special q algorithm in 1.76 hours 

with a five-fold improvement in speed. This provides a crisp cross- 

comparison of the algorithms since both factorizations were done on the 

Cray 1s with codes developed by Holdridge within a very short time span. 

Hence, the improvement in this case is directly attributable to the mathe- 

matics (special q algorithm). An even more spectacular, but also more 

difficult to interpret cross-comparison is possible. In 1131 Pomerance 

discusses the benchmark 49-digit number factored by Sam 

Wagstaff in 70 hours of computing and projects that it might be possible 

by various refinements (such as the early abort technique) to reduce the 

( 3  ll-1) 11617 

running time to as little as 20 hours. The latest generation of Sandia 

algorithms factored this number in 4 minutes and 34 seconds: a ratio of 

920 to 1 i n  computing time! Admittedly, this timing comparison is hard to 

interpret since different machines and different factoring algorithms were 

used, but the comparison supports our earlier statement that a roughly 

three-order of magnitude overall improvement in the speed of factorization 

has been achieved. Other comparisons yield similar results. 

Twenty-five large numbers 040 digits) have been factored at Sandia -- 
plus many other smaller numbers for which the overhead obscures the time 

actually spent in factoring. Figure 3 shows a least squares fit of (L(n))' 

to the data on numbers of at least forty digits for the three generations 

of algorithm; marked +, 0 and a s  before. Note, however, that in an 
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Figure  3 .  

e f f o r t  t o  make t h e  d a t a  machine independent ,  we have p l o t t e d  t h e  number of 

e lementary  machine o p e r a t i o n s  ( s h i f t s ,  adds ,  XOR, e t c . )  r a t h e r  t han  t h e  

t o t a l  t i m e  r e q u i r e d  t o  f a c t o r  a number. The curve is t r a n s l a t e d  upward 

i n  F igu re  3 compared t o  t h e  same curve  i n  F igure  2 s i n c e  t h e  Cray X-FIP has  

a b a s i c  c lock  f r e q u e n c y  o f  105 HHz compared t o  the  80 MHz c l o c k  f r equency  

f o r  t h e  Cray lS, s o  t h a t  t h e  e l a p s e d  time (F igu re  2 )  f o r  a g iven  number of 

elementary o p e r a t i o n s  on  t h e  X-MP i s  roughly 314 of what i t  would be  on  

t h e  1s. The most obv ious  c o n c l u s i o n  t o  b e  drawn from F igure  3 is tha t  t h e  

Sandia work has  - f o r  a g i v e n  number of machine o p e r a t i o n s  -- rough ly  

inc reased  t h e  size of t h e  number t h a t  can be f ac to red  by t h i r t e e n  d i g i t s .  

This  may not  sound l i k e  much of a n  improvement, bu t  over t h e  range  from 40 

t o  75 d i g i t s  -- e s s e n t i a l l y  independent  of  t h e  a lgor i thm used -- f o r  each  
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three-digit increase in the size of the number to be factored, the time 

required roughly doubles. 

fold improvement in factoring resulting from the Sandia work, independent 

of the machine. This latter statement assumes that the machine is vectori- 

This translates into slightly more than a 20- 

zed so that the quadratic sieve can be accommodated efficiently and also 

that the memory is organized in such a way that data can be "streamed" 

through an arithmetic unit and back into memory, etc., as is needed for 

an efficient implementation of a quadratic sieve. The Crays have this 

type of architecture, but so does the NEC SX-2, the Fujitsu VP-200 and the 

Hitachi S-810 [14,15]. 

A sort of :sound barrier" in computing is lo1* operations. At present 

this is a generally accepted dividing line between what is computationally 

feasible and infeasible. Figure 4 ,  taken from the same data shown in Fig- 

d i g i t s  

* O 1  

I I i 
Jan. Jan. Jan. Jan. 

82 83  P 4  85 

Figure 4 .  Size of composite "hard" number 

factorable by 10l2 operations. 
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ures 1 and 3, shows how large a composite "hard" number could be factored 

using 10l2 operations with the various generations of Sandia quadratic 

sieving algorithms and codes. Again, the roughly thirteen-digit overall 

improvement mentioned earlier can be seen to hold 'at 10l2 operations 

decreasing to roughly ten digits improvement at 1O1O operations -- the 

difference being due to the relative effect of the fixed overhead in the 

computation. 

The third factor, in addition to the algorithmic improvements and 

the advances in the speed and power of the machines on which the algorithms 

are run, that has made a major contribution to speeding up the factoriza- 

tion of large numbers is the architecture of the Cray family of computers 

(or of the Cray-like vectorized machines such as the NEC SX-2, the Fujitsu 

W-200 and the Hitachi S-810). We presuppose here that the reader is 

either already acquainted with the essential steps in factoring using a 

quadratic sieve, or else that he will return to this portion of the paper 

after having read the detailed discussion of the algorithm steps. Roughly 

speaking there are three major time-consuming steps. One involves the 

subtraction o€ the logarithm of a prime number, pi, from on the order of 

(l/pi) X 10" locations €or the largest numbers factored. 

forming the ring s u m  (exclusive OR, or@) of a pair of binary vectors 

7-15,000 bits long several million times. The third task, which has often 

been described as searching for a needle in a lo9 haystack, is a search 

over = 1010 locations looking €or linear dependencies, where we expect on 

average 20 "hits" in the 1O1O items searched. 

of the computer architecture on the speed of execution -- consider the 

first operation described above in which the same quantity, -lop pi, is 

to be added to a string of memory locations that can be indexed in such a 

way that the locations to which -log pi is to be added differ by a constant 

Another requires 

To appreciate the impact 
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p i .  

conventional architecture in which data is fetched from memory, operated on 

in the arithmetic unit (AU) and the result then returned to memory, this 

sort of operation is slow. 

1 megabit per second effective throughput is possible. 

has the ability to "stream" information from memory through the AU and 

back into memory for a fixed operation without pausing for fetch, store 

or interpret states. As a result, we can carry out this operation, 

The total string length is i~ lolo. In a machine of more or less 

Programmed optimally on a CDC 7600 only a 

The Cray however 

where X(pi) is the logarithm of pi, at 1/2 the clock rate of 80 MHz on 

the Cray 1s and at the full clock rate of 105 M& on the Cray X-MP. 

other words, the architecture alone has accounted f o r  a speed up of nearly 

forty times (Cray X-MP with 105 MHz clock versus CDC 7600 with a 37 MHz 

clock rate) for this type of operation! In order to exploit the capability 

to stream information from the memory through the AU and back into memory, 

the algorithm must have many long strings on which a fixed operation 

needs to be performed. 

organized in such a way that this feature of the Crays could be exploited 

is what prompted the Sandia research in the first place. 

In 

The recognition that quadratic sieving could be 

The exclusive or operation 

A(1) = A ( 1 )  @ B(I) 

goes at the same rate as the subtraction, i.e., the Cray 1s streams at 

1 / 2  X 80 MHz while the Cray X-Mp can stream data at 1 x 105 MHz. The 

search operation in either of the Crays has an overhead that only allows 

a throughput of 2 /3  of the clock rate, i.e., 213 x 80 MHz for the Gray 1s 
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or 213 X 105 MHz for the Cray X-MP. 

In addition to using the ability of the Crays to stream data, Holdridge 

did a timing analysis and found that if the major sieving loop was "unrol- 

led" that the same computation could be carried out even faster. 

As a result of the timing analysis of the sieving code it was also deter- 

mined that a great deal of time was spent in searching. Once the sieving is 

done those vector entries that have reached a specified limit must be found 

and saved. The search, written in Fortran with an "if" statement was not 

vectorized by the Cray compiler. 

Language (CAL) subroutine which does use the vectorization capability and 

is much faster. 

The search is now done by a Cray Assembly 

The bottom line, when all of these refinements are included and when 

one weighs the efficiencies for the various operations with the relative 

times spent in carrying out the associated calculation, is that the Cray 

1S, running the quadratic sieve, has a throughput (bits of meaningful infor- 

mation processed per second) of 114 x 80 MHz while the Cray X-MP achieves 

314 x 105 MHz. Both of these figures are quite impressive since they 

indicate that the coding is exceptionally taut -- so much so that Cray 

scientists have said that these codes come the closest to running the 

Crays "flat out" of any codes they know of. The point is that since no 

code can have a throughput greater than the clock rate, and since the 

throughput with these codes (especially on the X-Mp) is so close to the 

clock rate, there is only a marginal improvement possible from further 

refinements of the coding -- for the present factoring algorithms. Almost 

an order of magnitude of the total advance in factoring achieved at Sandia 

is attributable to the efficiency with which the Crays are being used, 

i.e., to the tautness of the codes. 

We can extrapolate the future of factoring a short distance into the 
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future with relatively high confidence. First, the Cray X-Mp is a dual 

processor machine in which the present Sandia code has only used one of 

the processors. Preliminary work on splitting up the main parts of the 

quadratic sieving calculation so that two processors can be efficiently 

employed -- a nontrivial task incidentally -- suggests that it may be pos- 
sible to gain a factor of J 1.7 in computing effectiveness by using the 

X-MP to its fullest. Using the rule of thumb that doubling the computing 

time roughly equates to increasing the size of the number that can be 

factored with a fixed amount of work by three digits -- taking advantage 
of the dual processor capability of the Cray X-W should make it possible 

to factor numbers of 73-74 digits in the same time required to factor the 

71-digit number using a single processor. Another way of stating this 

result is; with the present code and using the Cray X-MP, 75-digit numbers 

should be factorable in roughly a day's computing time. 

Looking at the next generation of vectorized machines -- especially 
the Cray I1 and also the Fujitsu VP-200 or the NEC SX-2 [14,15], all will 

have a 256 million word high-speed memory compared to the four million word 

memory on the Cray X-MP used in the research reported here. The Cray I1 

has a projected arithmetic capability of 2000 megaflops (millions of float- 

ing point operations per second) while the Japanese machines have 533 and 

1300 megaflops respectively compared to - 100 megaflops for the Cray X-MP. 

Perhaps more significantly for the quadratic sieve algorithm, all have an 

improved vectorization capability; 80 K for the SX-2 and 64 K for the VP-200 

compared to the 4 R capability of the Cray 1s or 2 x 4K of the Cray X-MP. 

All of these factors when combined suggest that the Cray I1 and probably 

the Fujitsu V P - 2 0 0  or the NEC SX-2 will be roughly eight to nine times 

more effective in factoring using the quadratic sieve than is the Cray 

X-MP. This translates into an increase in the size of the numbers that 

can be factored of = LO digits. We therefore feel quite confident in pro- 
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jecting that 85-digit numbers will be factorable in a day's time using 

the machines that will be available in the next year or so as indicated in 

Figure 1. 

Beyond that point, we leave it to the reader to draw his own conclu- 

sions. It i s  unlikely, however, that either of the curves i n  Figures 1 or 

4 showing recent progress in factoring will suddenly go "flat", but whether 

the exponential rate of change will continue is impossible to predict. 

What does appear plausible to predict, though, is that it will be feasible 

to factor 100 digits by the end of the decade, i.e., by 1990. 

Fanciful Factoring 

Most general purpose factoring algorithms (continued fraction, 

Schroeppel's sieve and the various quadratic sieves) depend for their 

success on the following simple observation. In the r i n g  of residues 

modulo a composite number n, any quadratic residue, y, i.e., a residue 

that is the square of some other element in the ring, has at least four 

"square roots" -- and perhaps many more depending on the choice of y and 
on the prime decomposition of n. If there existed an oracle that when 

presented with a quadratic residue, y ,  would pronounce a square root of y ,  

then n could be factored with probability that goes to 1 exponentially 

fast. For example, if n - pq, p and q distinct primes, and y = x2 (mod n) 

where x has the unique representation x = ap + bq (mod n), where 0 C a < q 
and 0 < b < p ,  then y has the four square roots ( 2  a)p + (f b)q where we 

interpret -a = q-a and -b = p-b. To factor n using the services of the 

oracle, choose x = ap + bq (at random) and compute the quadratic residue y 

i x2 Z a2p2 + b2q2 (mod n). We, of course, do not know a, p, b or q since 

we don't yet know the factorization of n, but we do know x and y .  

oracle when presented with y, would with probability 112 pronounce either 

y1/2 = ap + bq or y1/2 = (-a)p + (-b)q in which case we learn nothing 

The 
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about the factorization of n. 

the oracle would pronounce either y1I2 = ap + (-b)q or y1I2 = (-a)p + bq. 

In which case the two greatest common divisors: 

On the other hand, with probability 112 

would be either p and q o r  else q and p ,  respectively, depending on which 

root the oracle chose. 

All of the general purpose factoring algorithms mentioned cause the 

computer to function (ultimately) in the same way as our fancied oracle. 

The main difference is that instead of getting back a square root as the 

response to a submitted quadratic residue, the algorithm yields a sequence 

of intermediate answers, that ultimately amount to one of the oracle's 

responses. Just as in the case of the oracle, a quadratic residue, Qi, 

is presented to the algorithm -- but the response is not (except in the 
rarest of cases) a square root of Qi, but rather the prime decomposition 

of Qi, in which some of the prime factors may occur t o  an odd power. 

Hence it is computationally infeasible to infer a square root of Qi from 

the response, since this would be equivalent to being able to factor n. 

If after sufficiently many responses, however, a subset of the Q ' s  can be 

found for which each of the primes that has occured as a factOK in some 

one of the Q's has occurred an even number of times in all, then we are 

able to effectively recreate one of the oracle's responses. Since the 

product of the Q's is a quadratic residue of a root that we know and the 

square root of the product of the primes is trivially the product of each 

of the primes raised to half of its even exponent, it is also feasible to 

calculate a square root. Just as in the case of the oracle, when = pq 

there is only a 50-50 chance that this will lead to a factorization of n 

with comparable probabilities for other composite n, but this is the essen- 

tial notion underlying the various factoring schemes. 
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Quadratic Sieving: Plain 

Given an odd number, n, to be factored, the basic quadratic sieving 

scheme [13] calcdates a sequence of (relatively) small quadratic residues 

where m = [A]. 
A. It is important to keep Q(x) small since the algorithm attempts to 

factor Q(x) over a prescribed -- but restricted -- set of primes. This 

set of possible factors of Q(x) consists of precisely those primes for 

which n is a quadratic residue, i.e., 2 and the odd primes, p, for which 

the Legendre symbol (n/p) = 1. Fortunately, the Legendre symbol is easy 

to calculate in a manner similar to the Euclidean algorithm for finding 

the greatest common divisior, so that it is computationally easy to find 

the t-1 smallest odd primes, pi, f o r  which (n/pi) = I. 

elements (-1, 2 ,  pi) we shall refer to as the factor base. In order for 

the algorithm to succeed, we must find sufficiently many quadratic residues, 

Q(x), that factor completely into factors in the factor base so that it is 

possible to find some subset of the Q(x) among which the prime factors 

have all occurred an even number of times. The justification for referring 

to the procedure as a sieve is now easy to see. If palQ(x) for some x, 

then pal(Q(x ? hpa), h = 0,1,2, ..., hence the division of the resulting 
sequence of quadratic residues can be performed by a sieve-like operation 

at argument values indexed in an arithmetic progression with spacing of 

pa. One of the primary reasons for the speed of the quadratic sieving 

algorithm is that instead of having to carry out multiple precision trial 

divisions as is required in some of the other general purpose factoring 

algorithms, we can use single precision subtraction of approximate logar- 

ithms on the Q(x fhp=), i-e., at only those positions where it is 

If 1x1 < B and 8 << &, then Q(x) will be "close" to 

The set of t+l 
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already known that pa is a divisor. 

Since we must ultimately be able to combine a subset of the factored 

residues by multiplication to form a perfect square, i.e., to simulate a 

response by the oracle, we need to find a linear combination of the expon- 

ents for the primes appearing in the various factorizations such that the 

sum is even in each entry (for each prime). 

chance of finding such a dependency we should have approximately as many 

completely factored residues as we have primes in the factor base. 

might conclude from this, that t should be small. However, if we take t 

to be too small, then a given residue is not likely to factor. 

other hand, if we take t to be too large, we spend more time sieving and 

will have to find many more factorizations in order to be able to find a 

linearly dependent subset. It is clear, though, that qualitatively speak- 

ing as the magnitude of n increases, the number of entries, t, in the 

factor base should also increase. If one had no storage constraints, it 

would be possible to optimize the size of the factor base in order to 

minimize running time. In fact Wunderlich has analyzed, partly theoreti- 

cally and partly empirically, the optimum size of the factor base as a 

function of the size of n, but the conclusion is that this optimum is SO 

large that using a t of this size would result in an impractically large 

matrix even for the Cray X-MP; hence, we simply use as large a factor base 

as we can accommodate. 

In order to have a reasonable 

One 

On the 

A detailed discussion of the coded implementation of quadratic sieves 

is inappropriate to the objectives of this paper, however, it is necessary 

to understand the essential steps involved in using sieves for factoring 

in order to appreciate why and how the Cray machines can be so well matched 

to the algorithm. 

X, to the related congruences 

For the Q(x) defined in (l), we wish to find solut%OnS, 
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for pi an element in the factor base. 

precisely when (n/pi) = 1, piIn or pi = 2 .  

solutions, which are usually represented as Ail and Bil = -(Ail + 2m) (mod p i ) .  

The sieving process depends on the fact that if we had a list of consecu- 

tive values of Q ( x )  indexed by x, that for all indices x = A i l  t hpi and 

x = Bil C hpi the associated Q ( x )  would be divisable by pi. The sieving 

procedure consists of dividing out (effectively) pi from only these Q ( x )  

while leaving all other Q(x) unaffected. This requires two sievings of 

the array per solution to ( 2 )  -- but as we shall see, the whole procedure 
can be implemented very efficiently. 

As already remarked ( 2 )  has solutions 

If (n/pi) = 1 then ( 2 )  has two 

As a matter o f  fact, we actually wish to solve a slightly more general 

version of ( 2 )  

Q(x) G 0 (mod Pj) (3) 

since the smaller primes may occur to some power > 1 in the factorization 
of Q ( x )  over the factor base. We therefore choose a bound L and sieve €or 

all pi < L where pi is in the factor base. 

to be the length of one sieving block (8 x lo5 on the Cray IS). 

at least one successful division per prime power per sieving interval. 

For each odd prime pi in the factor base and each exponent j such 

We have generally taken L 

This gives 

that pg < L compute and save the two integers Aij and Bij, that are 

obvious generalizations of the Ail and Bil defined in connection with 

( 2 ) .  

and Bij = -(Aij + 2m) (mod pg)  is its paired solution. 

addresses for sieving are stored along with the associated weight log pi- 

In the same way that Q(x) was sieved for pi, we sieve at x = Aij 4 hp] 

and x = Bij C hpj by subtracting the weight log pi, i 2 1. 

Aij is the least nonnegative residue (mod pj) that satisfies ( 3 )  

These starting 

If 11 is 
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the highest power of p i  that divides Q(x) for some particular argument 

x and pi < L, then log pi w i l l  be subtracted from Q(x) precisely Q times 

as it should be by this procedure. 

R 

The prime 2 ,  of course, has every odd integer as a quadratic residue 

but x2 5 n mod 4 has a solution Lf and only if n E 1 mod 4 .  

k > 3 ,  x2 I n mod 2k has solutions if and only If n : 1 mod 8. 

indfces for sieving with powers of 2 must be chosen in a somewhat dii- 

ferent fashion depending on the residue class of n mod 8. Following a 

suggestion of Pomerance, these sieving parameters are assigned as follows: 

A l s o  for 

Thus, the 

In all cases 

A 1 1  5 (lm) (mod 2 )  

A 1 2 ,  B11, B12 undefined 

The other values of A l j ,  B 1 j  must be treated as three distinct cases: 

1) n E 1 mod 8 

B R  
2 

For j = 3 , 4 , .  . . , A, - < 2 < B, Alj is chosen such that 

Blj  5 -(A1, + 2m) (mod 2 j )  . 

A11 is assigned weight 3 log 2 .  

have weight log 2 .  

A l l  other defined A i j ,  B i j  

2) n Z 3 mod 4 

A11 is assigned weight log 2 .  Other A l j ,  B 1 j  are undefined. 

3) n = 5 mod 8 

A 1 1  is assigned weight 2 log 2 .  Other A l j ,  B l j  are undefined- 
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In sieving, start from the origin (x = 0 )  and sieve in both positive 

and negative directions until approximately t of the Q(x) have factored 

completely over the factor base. Because of some overhead In the initial- 

izing of arrays and the pipelining capability of the Cray's, we sieve on 

intervals which are as large as possible, say of length k, [O,k), [-k,O), 

[k,Zk), ... : k = 765,000 on the Cray 1s and 1.5 x 106 on the Cray X-MP. 

In order to be able to carry out the factorization by subtraction, we 

need to first fill the arrays with approximate (single precision) values of 

loglQ(x)l, x E [ak,(.Wl)k). 

these logarithms are taken as constant in a given sieving interval. When an 

array has been initialized in this way, we sieve on p j  by subtracting the 

assigned weight (usually log pi as discussed above) from each log Q(x) in the 

arithmetic progression of indices 

After the first positive and negative blocks, 

x = Aij and x = Bij 2 hp2 

and in the sieving interval [kl, k( kl-1)). 

When the sieving procedure I s  completed for a given block, the con- 

tents remaining in each location are compared with log pt: 

largest prime in the factor base. 

Indicate the residues corresponding to these locations have 'been factored 

entirely into the primes in the factor base and these addresses are stored. 

Occasional false alarms due to approximations are eliminated later. Notice 

that very little multiple precision arithmetic is needed. The sieving 

procedure is repeated block-by-block until the desired number of Q ' s  have 

been found that factored completely over the factor base. Once this has 

been done, it should be possible to find a subset of the Q's among which 

each of the primes has occurred an even number of times in total. The 

where pt is the 

Values that are smaller then log pt 
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problem of finding such a subset can best be treated as a problem of find- 

ing a linear dependency among vectors over GF(2). 

which Q(xi) factored completely over the factor base as indicated by the 

entry being less than l o g  pt, Q(xi) is now actualiy factored by dividing 

out the factors in the prime base to get 

For each address x i  at 

with which we associate a binary, t+l element, vector Vi = (vij) where 

vij = 1 if q j  is odd and 0 otherwise. This results in a roughly t x  t 

binary array, in which all of the essential information concerning the 

factorization of each Q(xi) is stored in t+l bits, or 2-6(t+1) words 

in the Cray. Now we need to find a subset, S, of the Vi such that 

@Vi = 4 where @ denotes exclusive OR and I$ denotes the zero vector. 
S 

This is a straightforward problem in Gaussian elimination over GF(2). 

We use an improved version of a code developed by Parkinson and Wunderlich 

for this part of the calculation [161. 

wand z are calculated from 

w = l-I (x+m) 
S 

where 

Once such a subset S is found, and 

(mod n) 

and Q(x) E S . 
and 

+Vi j (mod n) 
t 

- 2 :  n n p j  
j = O  S 

if w f 2 z, n can be factored by calculating the greatest common divisors 

(w+z, n) and (w--2, n) , 
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X 

n+n 
Q(x) 

both of which will be proper divisors of n. 

is a prime and that the procedure will have to be iterated to eventually 

obtain the prime decomposition of n, however the factor base remains the 

same and the factorizations of the Q(x) have already been done, so that 

only the end calculation would need to be repeated with some other linear 

dependent subset. 

It may be the case that neither 

1 2 3 4 5 6 7 8 9 
72 73 74 75 76 77 78 79 80 

115 260 407 556 707 860 1015 1172 1331 

For Example 

Since this has been -- unavoidably -- a rather lengthy discussion, we 
illustrate the basic quadratic sieve factoring algorithm using a s m a l l  

example. 
-- 

Let n = 37.137 = 5069, so that m = [&069] = 71. 

This example was "cooked" so as to have many small primes in the factor 

base, i.e., 5069 is a quadratic residue of 5,7,11 and 13, hence the factor 

base for t = 5 consists of -1,2,5,7,11,13. 

First 5069 5 (mod 8 ) ,  so that Z21Q(O 2 2h) and no other values of 

Q(x) are divisable by a power of 2 from the earller discussion of A1j and 

B 1 j .  

that R21 = -(l + 2m) 5 -3 

etc. Similar results hold f o r  p = 7, 11 and 13. Table I1 shows the 

Similarly, It is easy to show that for p2 = 5, A21 = 1 and hence 

2 (mod 5). Thus 51Q(1 2 5h) and 51Q(2 ? 5h), 

Table I1 

11 22 7 22.5 5.7 22 113 
Residual 37 139 101 43 29 293 

-4 -5 -6 -7 -8 
67 66 65 64 63 

-28 -169 -445 -580 -713 -84t  -973 -1100 

-1 .22 .5  -1 -1.22 - 1 - 7  -1*22*52-11 
a9 29 713 211 139 Resldual 

(23.31) 



shows the quadratic residues Q ( x )  €or -8 < x < 9, six of which factor com- 

pletely over the factor base. 

which sieving is based is easy to see. 

vis of the form. 

The periodic appearance of the factors on 

The corresponding binary matrix 

-1 2 5 7 11 13  

1 
1 1 

1 1 

1 

1 1 1  

1 1 

Three subsets of the Vi sum (exclusive OR) to 4: 

The relationship in (a) corresponds to having presented the quadratic 

residue 3625 to the oracle: 

3625 E Q( O)Q(-l)Q(-2)Q(-8) (mod 5069) 

3 (71)2(70)2(69)2(63)2 (mod 5069) . 

I n  this case the algorithm (oracle) returns the result that 

z E 23-5.7.11.13 E 4557 (mod 5069) 

while we can calculate 

w Z 71.70.69.63 G 512 (mod 5069) 

which tells us nothing whatsoever about the factorization of n, since 

4557 -512 (mod 5069) .  
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If however we use either of the other two linear dependencies, we have: 

corresponding to b; 

80-70.63 $ t 2*5*112*13 , (mod 5069) 

3039 f ? 523 (mod 5069) 

and hence 

(3039 + 523, 5069) = 137 

(3039 - 523, 5069) = 37 . 

While corresponding to c; 

80-71-69 $ ? 22.7*112 (mod 5069) 

1067 f ? 3388 (mod 5069) 

and hence 

(3388 + 1607, 5069) = 37 

(3388 - 1607, 5069) = 137 

either of which leads to the factorization of n. 

It is this "plain" quadratic sieve factoring algorithm that was first 

implemented at Sandia, with the results documented in earlier portions of 

this paper. In attempting to use this technique to factor numbers larger 

than 57 to 58 digLts, it was found that as the sieving interval became 

large enough to find J t residues that factored completely that the mag- 

nitudes of the quadratic residues to be factored themselves became pro- 

hibitively large. Eventually the frequency with which a quadratic residue 

could be completely factored over the prime base became so small that the 

sieving times were intolerable. For the largest numbers factored, we 

were examining many tens of milllons of residues to find even one complete 

factorization. 
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Quadratic Sieving: Fancy 

If it is the case that after all of the prime factors from the prime 

base have been factored out of a quadratic residue, 

2 the residual factor, q, is bounded by p t  < q < pt, then q is necessar- 
ily a prime. Use of these "large" primes in the factorization by simply 

adding them to the prime base has been suggested and implemented [13], 

since if two quadratic residues, Q(x1) and Q(x2) can be found such that 

and 

then 

i.e., a quadratic residue that can be factored over the prime base can be 

constructed. 

Although this approach, known as the large prime variation, does 

improve the performance of the algorithm over the "plain" quadratic sieve, 

the improvement isn't great enough to asymptotically make any difference. 

The reason that one only gets a marginal improvement from augmenting the 

prime base with a large prime is that for all intents and purposes we are 

randomly generating the quadratic residues -- at least so for as their 

divisability by a particular prime is concerned. Therefore the probability 
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that we will find another quadratic residue, Q(x'), - by sequentially 

indexing on x -- such that 
'1 I Q(x' 1 

Is l/q per trial, which is a very small quantity. If instead of simply 

searching for a Q(x') such that qlQ(x'), we could systematically generate 

a new sequence of Q's, such that qlQ(x), and i n  which Q(x)/q is small, 

then we could recover the same comparatively high probability that the 

resulting quotients would completely factor over the factor base that we 

had f o r  Q(x) when x, and the Q(x), were small. This is the essential idea 

behind Davis' special q variation or "quadratic sieving; fancy." 

Assume that we have found in the regular quadratic sieving an x f o r  

which 

2 where pt < q < pt. 
A candidate for such an x is found when the quantity remaining in one 

of the indexed entries after the sieveing is completed lies between log pt 

and 2 log pt. If by chance some of these candidate Q(x)'s actually factor 

over the factor base because of large prime powers that were not considered 

in the orlginal sieving, they are identiEied later and included among the 

complete factorizations. I f  q is actually prime, which is almost always the 

case, then note that: 

Q(x 2 hq) = (x ?: hq + m) - n = Q(x) C 2hq(x + m) + h2q2 , 

where each term on the right is divisible by q, and the magnitude Q(x + hq)/q 

is essentially that of Q(h), i.e., Q(x 

then form subsequences of residues starting at x and at -(x + 2m) (mod q )  

hq) w 2hm for x << &. We can 
4 
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whose magnitudes are conparable to those of Q(x) at the start of the orig- 

inal sieve. 

plain quadratic sieve. 

special q ' s  is that the arguments may become larger than single precision 

words in the computer. We overcame this by using the pairs (x,h) t o  repre- 

sent x + hq and thus temporarily avoid multiprecision operations. 

The sieving on the subsequences is done exactly as in the 

One problem that may be encountered when using 

These special q's are relatively easy to find compared to finding 

complete factorizations. Thus in order to keep reduced residues "small", 

for each special q we sieve the subsequence for only a short interval:. 

typically for a few blocks. 

plete factorization of a quadratic residue contains the factor q, which can 

be eliminated before going to the Gaussian reduction by combining pairs of 

factorizations to get quadratic residues in which q occurs an even number of 

times. 

When dealing with a single special q any com- 

The sieving property is not dependent on the primality of the divisor, 

q, SO why require the special q ' s  to be prime? This is to prevent "colli- 

sions" between special q subsequences; that is, to prevent the same factor- 

ization being generated by two subsequences. 

pt > q1 > 92 > pt, then we would have q1'q21Q(x). 
not have passed the factorization criterion in the first place. 

If qllQ(x) and qzlQ(x) and 

2 But then  Q(x) could 

The special q modification introduced a few complications to the 

computation such as multiprecision arguments, and required writing a new 

computer code, but the increased capability was dramatic. The bottom line 

is that the special q .Jariation enabled factorization of 63-64  digit 

integers in times comparable to those required by the original sieve to 

factor 55-56 d i g i t s .  Furthermore, the relatively constant success rate 

for complete factorizations within the subsequences enables an accurate 
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xo - 1 xo L -(1-2m) 1 - 5  (mod 23) 
_____ _ _  - _______- 

2 -2 -1 0 1  2 -2 -1 
26 4 9  72 95 118 20 43  66 89 112 

-191 -116 5 172 385 -203 -140 -31 124 325 

0 1  

-1 -1.22 5 22 5-7.11 -1'7 -1.22.5.7 -1 2 2  52.13 
191 29 43 29 31 31 

early estimation to be made of how much computing time will be required 

for  a given factorization. 

Examining the residuals in Table I1 we see that 23, 29 and 31 are 

all candidate special 9 ' s .  We let q = 23 be the special g in the example 

used earlier. Table 111 shows the resulting quadratic residues S, based 

s2 

SO 
T-1 
T2 

Table 111 

1 1  1 1 
1 1 

1 1 1  1 

1 1  

Sieve on special q = 23 

Q'(x) = Q(x0 + xq) = (xo + xq + m) - n 2 

X 

xo + xq + m 
Q' (x ) /s  

Factors from base 
Residual 

SX 

on xo = 1 and T, based on the paired xo Z -(1-2m) 5 -5 (mod 23) for 

1x1 < 2. 

by 2 3 .  

FOUK residues factor completely over the prime base -- extended 

-1 2 5 7 11 13 23 

Eliminating 23 by multiplying each row by the first we get; 
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-1 2 5 7 11 1 3  

Referring to Table 11, we see that 

From (a) we find 

and 

where 

w = 71-63.118.72 z 315 (mod 5069) 

z = 2 2 * 5 2 * 7 * 1 1  5 4754 (mod 5069) 

w z -z  (mod 5069) . 

Similarly from (b) we find 

and 

w = 70.69-118'72 3 2125 (mod 5069) 

z = 2 * 5 * 7 - 1 1 * 1 3 * 2 3  f 2125 (mod 5069) 

neither of which tells us anything about the factorization of n. On the 

other hand, from (c) 

and 

w = 70 .71*80-118*72  E 2655 (mod 5069) 

z = 2 .5*7 .112 .13*23  : 3099 (mod 5069) 
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where w f 2 z. Hence 

and 

(3099 + 2655, 5069) = 137 

(3099 - 2655, 5069) = 37 . 

One cannot expect such a small example to illustrate the advantages 

of using special q's -- although the range of the parameters i s  slightly 

smaller in the example with the special q than without. 
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