TWO NEW SECRET KEY CRYPTOSYSTEMS

Eurocrypt 1985, Linz, Austria

Henk Meijer & Selim Akl
Department of Computing & Information Science
Queen's University
Kingston, Ontarioc

1l. Introduction

Since the Data Encryption Algorithm DES was accepted as a stan-
dard in 1977 (4], few new conventional cryptosystems have been pro-
posed in the open literature [5). However DES is not necessarily the
most suitable encryption procedure for all applications. For example
two people desiring to set up a private secure communication channel
may not want to use a standardized encryption algorithm; or communi-
cating parties may want to choose from a set of encryption algorithms,
trading off speed against security. 1In this paper we propose two new
conventional cryptosystems that are

- adaptable (parameters can be chosen to increase or decrease

execution time and level of security),

- efficient (the algorithms are fast, even when implemented

in a high level computer language),
- easy to program (both algorithm can be written in less than
100 lines) and

- conceptually simple.

The above properties make the systems attractive to users that do
not have the time, expertise and/or money to install special hardware
chips or to write long and complicated programs. It is hoped that the
last property will increase the trust we can have in the security of
the systems. Since no practical cryptosystem can be proven to be
secure, we have to use encryption algorithms that we believe to be
secure. By using only conceptually simple operations and transforma-
tions, we hope that weaknesses are easier to detect. And even if such

F. Pichler (Ed.): Advances in Cryptology - EUROCRYPT 85, LNCS 219, pp. 96-102, 1986.
© Springer-Verlag Berlin Heidelberg 1986

97

weaknesses should exist, we claim that in some applications a system
with known deficiencies is preferable to an apparently secure, but

difficult to analyze cryptosystem.

2. Convential cryptosystem, based on permutations and multiplications.

This cryptosystem consists of three multiplication and two permu-
tation stages. We will first describe the system and then examine its

security properties.

2.1 The system

Let m be a message consisting of 2n bits. We write

m = <m m, >
0" 71

where my and m; are the n most significant and n least-significant

bits of m, respectively. The encryption key k is a block of 3n bits;

we can write k = <k0,k1,k >, where each ki is a block of n bits. P is

2 :
a permutation of size 2n. The encryption algorithm Ek(m) can be

stated as follows:
Ek(m) : <ag,a;> = <m0*k0,ml*k2>

<b0,bl> = P(<a0,a1>)
<CgrCy> = <bp*Kyrbytky>
<d0,dl> = P(<co,cl>)
<€gr€1> = <dgrkyedy kg
return (<e0,e1>).

In the above algorithm, the operation * is defined by

a*b=2"%14if a=2"1andb>0

ab mod 27-1 otherwise.

If the permutation P is chosen such that P = P-l

and if ko, k, and k2 are such that

1
ged (k;,2"-1) = 1 for i = 0,1,2 ,

then we have

-1 ,-1

{(m) = c iff E -1, (c) = m,
< 2 'kl >

k 0

B
<kgrkyeky> rk

where k;l is the multiplicative inverse of k; modulo 201,

2.2. Efficiency and implementation

98

The above algorithm can be implemented efficiently by using n-bit
integers rather than arrays of length n. Since 2n = 1 mod 2-1, an
algorithm for multiplication modulo 27-1 can be written as a seqguence
of regular additions, while adding overflow bits to the least signifi-
cant bits. For example, in the language C, using 32-bit unsigned

integers, we can add modulo 2"-1 with n=32 by

add (a,b) : if (a+b) < a return (a+b+l)
else return (a+b)
since overflow bits are automatically truncated. Or, in Pascal, with
. . P . 31
32-bit signed integers and the largest positive integer max = 277 -1,
we can add meodulo 231—1 by

add (a,b) : if max-a < b then return (a-max+b)

else return (a+b).

Given an addition function, an algorithm for multiplicatien

modulo 2"-1 can be written as

multiply (a,b) :
product Q
while b > 0 do
if b is odd then product = add (product,a)
right-shift (b)
cyclic-left-shift (a)

endwhile
return (product).

Notice that the above algorithm returns 2"-1 if a = 2%-1 and b>0, as
required for the encryption algorithm. The permutation step can be
executed by a sequence of modulo reductions, integer divisions and
additions, all with powers of 2. In C, this can be done with the
standard shift operation. For example the following algorithm swaps

bit i of integer a with bit j of integer b:

if ((a>»>>i)s0l)

{ a Xor=

{{b>>3s01)
01 << i; /* change bit i */
b xor= 01 << j; /* change bit j */ }

In languages in which shift operations do not exist, integers can be
mapped into arrays before being permuted, or bits can be swapped
directly by code looking like:

(a div 2%) mod 2
(b div 27) mod 2

99

i

[}

if a; = bj then a a+ (1 - Zai) 2

b+ (1 - 2b) 23,

o
]

2.3. Analysis

We first note that 2 * x, where * is the operation introduction
in section 2.1, is equal to a cyclic left shift of the n-bit integer
X. So if cs(x) denotes the cyclic left shift of x, we have

2t * = csl(x).

From this we can see that the multiplication step of the encryption
algorithm has the property

csl(a) * k = cs¥(a * k).

Therefore, in order to ensure that cyclic shifts will not be preserved
under the encryption function, the permutation P has to be chosen such
that for all (i,3j) # (0,0), there exist x,y, such that

P(< est(x), esT(y)>) #
< es (P (<x,y>) g, o8 (Pl<x,y>)) >
where P(<x,y>)0 and P(<x,y>)l denote the n most-significant and n
least-significant bits of P(<x,y>) respectively.

For all permutations P and keys k = <k0,kl,k2> we have

Ek(m)= EE(m) = Ek(m) ’
where ¥ denotes the bitwise complement of x. This can easily be seen
from the fact that for all x with 0 <= x <= 27-1,
x = 21 - x.
This property enables a cryptanalyst to
(i) reduce a search of the keyspace by 50% in case of a known plain-

text attack,

(ii) obtain a message-cyphertext pair (ﬁ,E) for each known pair {(m,c).

However, disadvantage (i) is not serious if the key space is suf-
ficiently large and (ii) can be prevented by, for example, requiring

that all messages end with a zero.

The encryption algorithm has good statistical properties, even if
it is reduced to two multiplications and one permutation. In fact it

can be proven that the multiplication step is complete, i.e. the func-

tion £, (,) defined by

100

fk(x) = k * x

is complete [3] for all k with gecd (k, 2™-1) = 1.

3. Secret-key cryptosystem and random-bit generator

The sender and receiver choose and agree on two n-bit (n = 64, say)

vectors V and W. The pair (V,W) represents the secret key.

The sender and receiver also choose and agree on two n-integer vectors
X and ¥ such that

X = Xy Xp9 -re X where 1 < x; i, and

<
n L
Y = ¥y Yy -+ ¥y where 1 <y, < i.

Each of X and Y is thus a permutation [2]. The pair (X,¥) is a param-

eter of the system which may - but needs not to - be kept secret.

Each plaintext message consists of n-bit vectors Mi' i=1,2, cee0l,

3.1. Encryption

With every message to be transmitted a n-bit vector U which is a func-
tion of the date and time is created.

This vector is used by the sender to compute two n-bit vectors Mo and

C0 as follows:

My = middle-n bits of UxV (i.e. M, = L(UxV mod 2772272,

0

C

o = middle-n bits of UxW (i.e. C L(UxW mod 23“/2)/2”/2J).

0
Let N
e mn , then NO =m m

equal the reverse of the bit pattern for M i.e. if M0 = my My

[=)

[V

a1 -+ My mp.

The message is now encrypted using the procedure below.

for 1i=1 to n do

(M7 _ye N5) = SMM; 4, Ny)
Ci-1 = Ci-1 @ My
Ci = PMj_y ®Ciyv M ®CT)
endfor.
The functions S and P are defined as follows. Let K = kl k2 . kn
and H = hl hy .. b,

1) function S(K,H)

101

Q=KxH {0 = 9y 9y +-- 9o,y i€ Q is a 2n-bit vector]
K =g _ 3n/2

n/2+1 Sn/2+2 -+ 93n/2 {K = |(RxH mod 2)/zn/ZJ}
H =

q3n/2 93n/2-1 -** 9n/2+42 9n/2+1 {8 is the reverse of K}

return (X,H).
2) function P(K,H) :
for i=n to 2 do

if k. = 0 then h, <-—> hx
else h, <--> h
Y
endif
endfor
return H.

The sender now transmits U, C C2, anes C[to the receiver.

l'
3.2. Decryption

The receiver goes through the same steps to compute MO' CD' No. Then

he recovers M M

10 Mar .o Mo using the following procedure.

for i=1 to r do

(Mi_qr N3) = SMy_40 Ny)
Ci-1 = Ci-1 M
. -1 .
Mi = Ci-l e P (Mi—l [::} Ci-l’ Ci) endfor.

1

The function P~ (XK,H) is the same as P(K,H) except that the for loop

goes from i=2 to n.
4. Conclusions

Both systems introduced in this paper can easily be implemented.
They withstand initial attempts to break them and possess no obvious
statistical weaknesses [1,3]. More statistical and analytical valida-
tion will be done in the future. Notice that the second system is an
example of a randomized encryption system, so if a message is
encrypted twice under the same key, it will result in two different
cyphertexts.

References
[1] H. Beker and F. Piper, Cipher Systems, John Wiley, 1982.

[2] D.E. Knuth, The Art of Computer Programming, Vol.2, Addison Wes—

102

ley, 1981.
{3] A.G. Konheim, Cryptography: a Primer, John Wiley, 1981.

[4] National Bureau of Standards, Data Encryption Standard, FIPS pub-
lication 46, U.S. Department of Commerce, January 1979.

[5] J.A. Thomas and J. Thersites, An infinite encryption system, Dr.

Dobb”s Journal, August 1984,

