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Abstract 

This paper is intended as an overview, presenting several results on the linear complexity of se- 
quences obtained from functions applied to linear shift register sequences. Especially for cryptologic 
applications it is of course highly desirable that the linear complexity be as large as possible, and 
not only to get a huge period. The theory reviewed in this paper contains several criteria on how 
to achieve such goals. 

1. INTRODUCTION 

In what follows we shall consider shift register sequences ( Z k ) k > O ,  over a finite field GF(q), q a 
prime power. Two well-known models for shift registers are in use. The Fibonacci model consists 
of cascaded memory boxes. The contents of each box is multiplied by a feedback coefficient 
before being taken to  a common summing device to produce the feedback element. The feedback 
coefficients are numbered c1, CZ, ..., c, from the feedback terminal. 

In the Galois model adders are inserted between the memory boxes, the system output is multiplied 
by the feedback coefficients, numbered c l ,  c z ,  ..., c ,  from the output terminal, and the products are 
taken to the adders. 

In both cases the same shift register recurrence is obtained: 

Three different methods for handling this recurrence are in use. The linear algebraic (matrix) 
method is the most commonly used (e.g. Golomb (1967)), in particular in coding theory. Here the 
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state (zk-l,zk-z,.. . ,xk-,,) of the Fibonacci model is transformed by the next-statefunction 

( z:;. ) = (; jjj cn!l 1) ( Z : ; : )  

(Zkyzk-l,.-.,Zk-n+l) = (Zk-l,Zk-l, ..., zk-n) ( :  ; ... i) 
Z k - n f l  . * .  Zk-n 

most often written in the transposed form 

c1 1 ... 0 

Cn- 1 ... 
Cn ... 

by means of the so-called companion matrix. By iteration 

(zk;) zk-1 = (: cn!l i)k-n 
20 ... zk-n 

where (z,,-I,z,,-~, ..., 20) is the starting state of the Fibonacci model of the register. 

A closely related finite automaton model is used by Nyffeler (1975). 

Rewriting the shift register recurrence as a homogeneous linear difference equation 

we can apply the classical technique as used by Selmer (1966) and Key (1976) among others. Here 
the characteristic polynomial 

- C n  c ( t )  = t n  - cltn-' - ... 

plays a dominant role. 

If the characteristic polynomial is factorized over its splitting field GF(qn), 

c(t) = n(t - ~ , ) ~ i ,  z, E GF(qn) with multiplicity mj , 
j 

then the general solution of the difference equation can be written 

Note that, compared with difference or differential equations over the field of reals or the complex 
numbers, (k+:-l) is used instead of k' in order to achieve linear independence over GF(q). 

Finally, the generating function method, used by Zierler (1959), can be applied to the shift register 
recurrence. Here the feedback polynomial 

f(t) = 1 - C l t  - C# - . . . - c,tn, 
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reciprocal to the characteristic polynomial, plays a major role. The shift register sequence (zk)k>O,  

is identified with the formal power series 

m 

k=O 

and then the shift register equation is equivalent to 

f(t)z(t) = x*(t) 

a polynomial of degree < deg f, so that 

a rational form over GF(q). 

Note that (zo,z1,. . . , zn-l) is the starting state of the Fibonacci model, while (zg, z;, . . . , z:-~) 
is the starting state of the Galois model. 

Zierler also introduced the linear spaces over GF(q) 

G(f) = { x'/f; deg X* < deg f}, 

consisting of all shift register sequences with f as feedback polynomial. 

The rational forms z=x*/f are ideally suited to handle linear shift register sequences, e.g. 

f equals the minimum polynomial f, of the sequence z if and only if x* and f are coprime, 
gcd(x',f) = 1 

2. THE LINEAR COMPLEXITY CONCEPT 

Given a periodic sequence z over a finite field GF(q) we can always write it as 

i.e. a linear shift register sequence. The length of the shortest possible linear shift register being 
able to produce the sequence, i.e. the degree of the minimum polynomial f, 

L(z) = deg f, 

is called the linear complezity of the sequence. 

It is readily generalized by 
L(S) = deg fs 
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to any finite set S of periodic sequences. 

The problem of determining the linear complexity of a given sequence is completely solved in prac- 
tice by the well-known Berlekamp-Massey algorithm (Berlekamp (1968), Massey (1969)). However, 
when the linear complexity becomes very large or when we wapt to derive some nice criteria on 
how to obtain maximal complexity, another technique i s  needed. 

Any memoryless function of a number of linear shift register sequences over GF(q) can be imple- 
mented by means of a function F from GF(q)" to GF(q). Since GF(q) is finite, F has to be a 
polynomial function 

F ( z )  = AazE, - A, = Aala2...am, - 2% = Z;'z;= , , . x> 
a - 

This is the algebraic normal form used by Miiller (1954), Reed (1954) for q=2, and by Benjauthrit 
and Reed (1976) for general q. 

Thus we have to study 

2. L(zy), ( q ) k  = ZkYk (Hadamard product) 

3. L(za), (z")k = zt (Hadamard power) 

The simplest case is L(az). Defining the content 

c(a)=O when a=O, =1 when a# 0, 

we find immediately 

For z + y we have 

L(az) = c(a)L(z). 

Theorem 2.1: L(z  + y) 5 L(z)+L(y) with equality if and only if the minimum polynomials f, 
and f, are coprime i.e. gcd(f,,f,)=l. 

Corollary 2.2: L(G(f) + G(g)) 5 L(G(f)) + L(G(g)) with equality if and only if f and g are 
coprime i.e. gcd(f,g)=l. 

3. THE COMPLEXITY OF THE HADAMARD PRODUCT 

The Hadamard product was first considered by Selmer (1966). When f ( t )  = n,(l - f )  , g ( t )  = 
n,(l - $) with mere simple zeroes, Selmer defined Qg= n,,,(l - A) and showed 

Theorem 3.1: Assuming z belongs to G(f), y to G(g)  then zy belongs to G(f§g). Further, i f f  
and g are prime (irreducible) then Qg is prime too. 

Corollary 3.2: If f and g are prime then f,, = Qg. 



123 

Note the analogy with Hadamard's well-known theorem for analytic functions: 

If cF=p=, antn,  cF=p=, a,z" are analytic around the origin with singularities in the points z j ( u ) ,  

1 5 j 5 r , z k ( b ) ,  1 5 k 5 8 ,  then the Hadamard product ~ ~ = P = o a n b n z n  has all its singularities at 
the points z j (a ) zk (b ) ,  15 j 5 r, 15 k 5 s. 

Zierler and Mills (1973) defined Wg = fig when f and g have mere simple zeroes and transferred it 
to the general case by means of an algebraic algorithm, utilizing the prime factorizations off and 
g. No bounds on deg Wg or conditions for maximality were given. 

Remark. Zierler and Mills used v although it has nothing in common with the logical OR. 

Herlestam (1977, 1982) d e h e d  fAg as the minimum polynomial of 

and showed 

Theorem 3.3: deg fAg 5 deg f .  deg g with equality if and only if at least one off and g has mere 
simple zeroes and all the zero products z(f)z(g) are different. 

Corollary 3.4: If f and g are prime and of coprime degrees then deg fAg = deg f . deg g. 

(Selmer (1966): in this case fAg is prime.) 

Corollary 3.5: L(zy) 5 L(z)L(y) with equality if and only if at least one of f, and fy has mere 
simple zeroes and all the zero products z(fz)z(fy) are different. 

Corollary 3.6: Iff, and fy are prime and of coprime degrees then L(zy) = L(z)L(y). 

(Selmer (1966): in this case fzy is prime.) 

Remark. Using the classical approach when q=2 and f, and f, prime and of coprime degrees, Key 
(1976) proved Corollary 3.6. 

The period of a sequence z # 0 in G(f) is trivially upperbounded 

per z 5 qdeg f - 1. 

When equality is attained z is called a maximum length sequence (ML for short). The period of 
a feedback polynomial is defined by 

per f = min r for which f(t) divides 1 - t'. 

Apparently per z = per f, so if z is ML then all z # 0 in G(f) are ML and 

In this case f is called a maximum length polynomial (ML for short). Many authors use 'primitive 
polynomial' instead of ML-polynomial (but not 'primitive sequence' instead of ML-sequence !) . 
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4. THE POWER FUNCTION 

The power function za is of interest only when q>2 since u2=u holds in GF(2). If a >q it can be 
reduced by means of uq=u in GF(q). Thus we may assume 0 5 a <q. 

Since q is a prime power, q=pc, we can proceed by writing a in the p-ary number system 

a = a0 + a l p  + azpZ + . . . + ac-lpe--l, 

where the digits ai are 2 0 and <p. 

In order to handle a power of a shift register sequence we may use the well-known multinomial 
formula (see e.g. Tucker (1980)) 

n 

summed over all nonnegative solutions g of xi u;=s. 

Note that & should be interpreted 6y first considering it over the integers, then reducing it 
modulo the characteristic of the field. 

Utilizing this multinomid formula Herlestam (1982 and later) derived the following results. 

Theorem 4.1: If 0 5 a <q, a = x:ih a;pi, 0 5 a ,  < p ,  q=pe, then 

with equality if z is a MIrsequence. In particular, when p=2, 

L(2") 5 L(z)H("), 

where H ( a )  is the Hamming weight of a and where equality holds if z is a ML-sequence. 

(Brynielsson (1985): equality in the MGcase). 

Now we have at our disposal all the components for handling any function of any finite number 
of shift register sequences. In the general case it may of course be quite hard to guarantee that 
maximal complexity be attained, but in many instances this can be achieved. 

The following case is closely connected with the power function. Let z1,z2, _. ., z, be a number 
of different shift register sequences with the same feedback polynominal f. The power function 
technique yields 

a not particularly good estimate however. Instead, Herlestam (1983) derived the following 

Theorem 4.2: Assume f prime over GF(q) and that z1,zz,. , . ,z6, all # 0, be shift register se- 
quences with f as feedback polynomial so that L(zi)=L=deg f. Further, let zl, zz, . . . , z,=y. Then 
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6- 1 
s - j ( q  - 1) - 1 L + s - j q  - 1 ) (  L - j - 1  

so that A,(L,s) = X ( - l ) J  
i = O  

if g is a prime factor off, then deg g divides deg fy.  

In particular, when s <q, A,(L,s) = 

6 L  
and when q=2, Az(L, s) = ( k). k= 1  

Remark. In the case of nonlinear feedforward, where q=2 and f a ML-polynomial, this result 
was stated without proof by Ristenbatt et al. (1973) and obtained later by Key (1976). 

5. NONLINEAR FEEDFORWARD 

The GF(2) case has been investigated by Groth (1971), Key (1976), Jennings (1980), Beker and 
Piper (1982), Rueppel (1984). 

In the GF(q) case Herlestam (1983) derived 

Theorem 5.1: Assume that f is prime over GF(q) and that z;, 1 5 i 5 s 5 deg f, are se- 
quences taken from different taps in a linear shift register with f as feedback polynomial. Let 
y = zl, 2 2 , .  . . ,z,. Then 

1. L(y) is independent of the starting state 

2. if g is a prime factor of fy then deg g divides deg fy so if deg fy is prime then f, must be 
prime unless it has a first-degree factor 

3. all zeroes of fy are simple and belong to the set 

Lower bounds on the linear complexity have been obtained by Rueppel (1984) in the GF(2) case 
for some special classes of feedforward functions. 

6. SOME SKETCHES OF PROOFS 

Th. 2.1: From f,+,Ilcm(f,,f,) I f,f, it follows that L(z + y)< L(z)+L(y). If gcd(f,,fy)=l and g I 
f,fy, g prime, then g If, or g If, but not both so assume g if,. Should L(z -b y)< L(z)+L(y) then 
g /(x*f,+y'f,) i.e. g 1 x*fv. Since gcd(g,fy)=l this implies g : X I ,  against the minimaIity off,. 
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Conversely, if gcd(f,,f,)=h, deg h > 0, then h I (x’f,+y’f~), implying L(r  + Y)<  L(Z)+L(Y). 

Th. 3.3: I f f  and g are feedback polynomials over GF(q) so that 

over a common splitting field GF(qe), and if z=x*/f, y=y’/g, then the partial fractions expansions 
are 

By means of the binomial formal power series 

a + k  
c4 

k=O 

As is easily shown 

where max(r,s)l m 5 r +s, and the integers d , ( r , s )  are independent of k. This shows that, over 
GF(q’), zy is a partial fractions expansion of a rational form, the denominator of which has the 
zeroes ri(f)zj(g) of multiplicity 5 m,(f) + m,(g) - 1. 

Using the power sums of the roots to show that some polynomials over GF(qC) are in fact poly- 
nomials over GF(q), it follows that deg fZv 5 deg f. deg g, and, after some further manipulations, 
the theorem follows. 

Th. 4.1: When the characteristic coincides with the exponent the multinomial formula is partic- 
ularly simple 

( ~ x j ) ” = c x j ”  
since all multinomial coefficients # 1 are divisible by p. 

By iteration 

(E Xj)Pi = 1 Xj’1 

When 0 5 a <p, 

where all the coefficients are # 0 since a! cannot be divisible by p. Applied to an arbitrary element 
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of a shift register sequence, one obtains for each term in the pary representation u = 1; u;p' the 
inequality 

The clause on equality follows from the facts that if z is a maximum length sequence, the zeroes 
of fi can be written as 

zqi, 0 5 i <L(z), 

where z is a primitive (9"-1)-st root of unity, and that the q-ary representation of a number is 
unique. 

Th. 4.2: Assume &st that zl, zz,.. . , z, are ML-sequences so that 

" Aij z; = .;If = c ~ 

1 - t/%j 
j = 1  

where all Aij's are nonzero. Thus 

Z i k  = C A(UJ($)-k 
U - 

where the summing interval is the set of all nonnegative solutions g of Cj u, = 8 ,  and 

summed over all permutations j of u1 l's, u2 Y s , .  . ., ua s's. The minimum polynomial f, cannot 
have any multiple zeroes, since the coefficients A(g)  are independent of k. 

The zeroes off can be written zj = zq' where z is a primitive (qn- l ) -s t  root of unity and 

- 

g s = z a ,  0 < a < q n - 1 ,  

where Cj u;qj = a (mod q" - l), E being a partition of s = C j  u,, u,  2 0. 

Let Aq(n, s) denote the number of a's obtainable this way. It can also be described as the number 
of q-ary n-strings 

n-1 

a = C ajqj,  not all a; = o 
j = O  



128 

such that ~~~~ aj=s - k(q - I), 0 5 k < s / ( q  - 1) .  This leads rather quickly to the form 

where the integers c q ( s , k )  are independent of n and 

cq(s,k) = cq(s - j, k - 1) , 
q--l 

cs(s, l )  = cq(s,s) = 1. 
j = 1  

When f is prime only, per f divides qn-1 and z is a primitive root of unity of order per f. Hence 
the number of different (gx)'s must still be 5 Aq(n,s). 

The clause on a prime factor off, follows quite easily from the fact that per f, divides per f. 

Th. 5.1: Follows from 
xf(t) = t e i x * ( t )  (mod f(t)), 

where x* is associated solely with the starting state and the exponent ei 2 0 with the position of 
the tap from which zi is taken. 
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