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A new type of nonlinear feedforward logic for binary sequence genera-
tors is proposed, i.e. a logic that combines the stages of a linear
feedback shift register (LFSR) in a nonlinear way. The sequences
generated are analyzed with respect to their transient and ultimately
periodic behavior. They are shown to have a balanced zero-one distri-
bution, and a lower bound on their linear complexity is derived which
grows exponentially with the length of the LFSR.

Binary sequences with good randomness properties play an important
role in cipher systems [1]. Usually, such sequences are generated by a
finite state machine and are therefore not truly random. A common
measure for the unpredictability of a pseudorandom binary seguence is
its linear complexity L, defined as the length of the shortest linear
feedback shift register (LFSR) that can generate the sequence. A high
linear complexity is an important necessary requirement for crypto-
graphic applications, and corresponding generators therefore have to
be nonlinear.

In the case of a nonlinear feedforward logic that combines the stages
of a single LFSR, Key [2] has shown how the linear complexity can be
determined. If the order of the feedforward function is larger than
two, however, the procedure becomes very involved and in general only
yields upper bounds. In this paper, we shall show that a lower bound

on the linear complexity can be obtained if the feedforward function
satisfies certain requirements.

A special type of logic that produces such feedforward functions is
shown in Figure 1. It is applied to an f£-stage m-LFSR (i.e. an LFSR

generating a sequence {ut} of maximal period 2£-1) and contains the
following elements:
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FIGURE 1
The nonlinear binary seguence generator.

- a delay logic which generates a cyclic shift U _m of Uy - (Such a
logic may be based on the shift-and-add property of m-seguences

(31):
- a delay register DR of length j, with j relatively prime to 22-1;

- a switch, controlled by u
or w (if u

tem’ which connects either Uy (if u

= 1) to its output.

t-m

t-3 t-m

with the connections as shown in Figure 1, the output sequence {wt} of

the generator satisfies the recursion

We = (1@®u._ du @u Ve , t>o0 (1)
with initial conditions,

we =1 , - <tc<-1 , (2)

where {r

t}J'l denotes the initial content of the delay register DR.

t=0

A detailed analysis of the properties of the sequence {wt} will be

presented in a more extended paper [4]. Here we restrict ourselves to

a brief summary of our main results.
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We first note that the generator is selfsynchronizing in the sense
that for t larger than some transient time tE < ¢j, the solution {wt}
of Eq. (1) becomes periodic and independent of the initial conditions
{rt}. If the period T = 2.1 of the m-sequence {ut} is prime and
larger than 3, then {wt} also has period T.

For our further analysis we now assume that the two delays m and j are
related by

m = kj , K < g-1 : (3)

Then the (unique) periodic solution to Eq.(1l) is explicitly given by

We = Up @ ug g aug & oup g) @ up g W g3y @ Uppy)

(4)

® oo ® Uy Ueo(ke1)3 Bem(2k-1)3 Pe(k-1)3 & )

Through Eq. (4), the output segquence {wt} of our generator is expres-
sed in terms of the m-seguence {ut} via a nonlinear function of order
k+1. We observe that the highest order term of this function is a
single product of k+l1 equally spaced shifts of Uy,

Yt-(k-1)j t-kj " Yt-(2k-1)j - =)

It is this specific property that enables us to derive a lower bound
on the linear complexity of the sequence {wt}

Theorem 1: Let f denote a nonlinear function combining the cyclic

shifts of an m-sequence {ut} of period 22—1, and let the highest order

erm of f be a product of . . i £
t p ct of the form Uy UgsiUes(n-1)j with n <

. 2 :
and (j.,2°-1) = 1. Then the linear complexity L of the sequence defined
through f is bounded from below by L > (ﬁ).

1t follows that the linear complexity L, of the sequence {w ] represen-
ted by Eq. (4) is bounded from below by

4
LW _>_ (k+l) ’ k < 2-1 . (6)
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For a given 2, this bound is optimal if k+1 = [2/2]. It then becomes

2 2 2
Ly 2 Cpgpa)) ™ Vg 2 S L (7)

which is of the same order of magnitude as Key's corresponding upper
bound {2],

2

[2/2]
L < % (’.2)«-%2 , 25> 1 . (8)

Ww - . i
i=1

The proof of Theorem 1 is given in Ref. [4], and we note that essen-
tially the same result has been derived independently by R. Rueppel
[5]}. Recently, we also became aware of a paper by Kumar and Scholtz
[6] where a closely related theorem is used to establish a lower bound
on the maximum-achievable linear complexity in a family of bent-func-
tion sequences.

The proof is based on a result due to Key [2] which can be stated as
follows. Let a be a primitive element of GF(ZQ), and let {st} be a
binary sequence of period T = 241 whose elements are represented in
the form

2
st = @& & T Yx atx , Yy & GE‘(ZR) , (9)
h=1 erh
where Hg denotes the set of integers in {0,1,...,T-1} with Hamming

weight h. Then the linear complexity L of {st} is egual to the number
of nonvanishing coefficients Yy-

Now Theorem 1 is concerned with sequences

n-1

s, = 0 Uiy * lower order terms . (10)

k=0

where {ut} is an m-sequence of period 22-1 and therefore has the re-
presentation [7]

u = @ y a . Yy € GF(22) , (11)
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with « a primitive root of the characteristic polynomial of {ut}. in
general, the determination of the expansion coefficients Yy for Sgr
obtained by inserting Eqg. (11) into Eq. (10), is prohibitively com-

plex. Those coefficients y however, for which the Hamming weight of

X is maximal (i.e. equal tg n), all originate exclusively from the
highest order term in Eg. (10) and can be expressed explicitly as
Vandermonde determinants. If n < £ and (j,2£-l) = 1, none of these (2)
coefficients vanishes, so that the linear complexity L of {st} is at

least (E)'

Let us finally summarize some results on the statistical properties of
the sequence {wt} generated by our nonlinear generator (Eq. (4)). The
fraction of ones, P{wt=1}, is given by

22—k+l

) ;
%1

P{w,=1} = 5 (1 + k < 2-1 , (12)

1
2

so that for large values of £ and k the balance between zeros and ones
in {wt} is almost ideal. The autocorrelation function Cw(t), however,
exhibits peaks (of exponentially decreasing magnitude) at t = 3j,23,...
These peaks are due to the special structure of our generator (j is
the length of the delay register DR, see Figure 1). In addition, the
probability that Wy coincides with u, is close to 3/4, and thus devia-

t
tes considerably from the ideal value of 1/2.

To overcome these leakage problems ,and to eliminate the peaks in the
autocorrelation function, the simple generator of Figure 1 obviously
has to be modified. It turns out that the structure allows for a va-
riety of corresponding modifications which leave the lower bound on
the linear complexity unchanged, and which moreover introduce a conve-
nient additional key multiplicity [4].
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