Skip to main content

An Image Data Model

  • Conference paper
  • First Online:
Book cover Advances in Visual Information Systems (VISUAL 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1929))

Included in the following conference series:

Abstract

In this paper, we analyze the existing approaches to image data modeling and we propose an image data model and a particular image representation in the proposed model. This model establishes a taxonomy based on a systematization over existing approaches. The image layouts in the model are described in semantic hierarchies. The representation is applicable to a wide variety of image collections. An example for applying the model to a plant picture is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, I., and Grosky, W., ‘Spatial Similarity-based Retrievals and Image Indexing By Hierarchical Decomposition,’ Proceedings of the International Database Engineering and Application Symposium (IDEAS’97), Montreal, Canada, (August 1997), pp. 269–278.

    Google Scholar 

  2. Amadasun, M., and King, R., ‘Textural Features Corresponding to Textural Properties,’ IEEE Transactions on Systems, Man, and Cybernetics, 19 (1989), pp. 1264–1274.

    Article  Google Scholar 

  3. Chang, S., Shi Q., and Yan, C., ‘Iconic Indexing by 2-D Strings,’ IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 9, Number 3 (May 1987), pp. 413–428.

    Article  Google Scholar 

  4. Chen, Y., M. Nixon, and Thomas, D., ‘Statistical Geometrical Features for Texture Classification,’ Pattern Recognition, 28 (1995), pp. 537–552.

    Article  Google Scholar 

  5. Galloway, M., ‘Texture Analysis Using Gray Level Run Lengths,’ Computer Graphics and Image Processing, 4 (1975), pp. 172–179.

    Article  Google Scholar 

  6. Grosky, W., Fotouhi, F., and Jiang, Z., Using Metadata for the Intelligent Browsing of Structured Media Objects, Managing Multimedia Data: Using Metadata to Integrate and Apply Digital Data, Sheth A., and Klas W., (Eds.), McGraw Hill Publishing Company New York, (1997), pp. 67–92.

    Google Scholar 

  7. Gudivada V. and Raghavan, V., ‘Design and Evaluation of Algorithms for Image Retrievals By Spatial Similarity,’ ACM Transactions on Information Systems, Volume 13, Number 1 (January 1995), pp. 115–144.

    Article  Google Scholar 

  8. Gudivada, V., ‘qR-String: A Geometry-Based Representation for Efficient and Effective Retrieval of Images By Spatial Similarity,’ IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 3, (May/June 1998), pp. 504–512.

    Article  Google Scholar 

  9. Gudivada, V., Raghavan, V., and Vanapipat, K., ‘A Unified Approach to Data Modeling and Retrieval for a Class of Image Database Applications,’ IEEE Transactions on Data and Knowledge Engineering, (1994).

    Google Scholar 

  10. Gupta, A., Weymouth, T., and Jain, R., ‘Semantic Queries with Pictures: The VIMSYS Model,’ Proceedings of the 17 th Conference on Very Large Databases, Palo Alto, California (1991), pp. 69–79.

    Google Scholar 

  11. Haralick, R., Shanmugam K., and I. Dinstein, H., ‘Texture Features for Image Classification,’ IEEE Transactions on Systems, Man, and Cybernetics, SMC-3 (1973).

    Google Scholar 

  12. Huang J., Kumar, S., Mitra, M., Zhu, W., and Zabih, R., ‘Image Indexing Using Color Correlograms,’ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, (June 1997), pp. 762–768.

    Google Scholar 

  13. Huang, P. and Jean, Y., ‘Using 2D C+-Strings as Spatial Knowledge Representation for Image Database Systems,’ Pattern Recognition, Volume 27, Number 9 (September 1994), pp. 1249–1257.

    Article  Google Scholar 

  14. Jungert E. and Chang, S., ‘An Algebra for Symbolic Image Manipulation and Transformation,’ Proceedings of the IFIP TC 2/WG 2.6 Working Conference on Visual Database Systems, Elsevier Science Publishing Company, Amsterdam, The Netherlands (1989), pp. 301–317.

    Google Scholar 

  15. Laine A. and Fan, J., ‘Texture Classification by Wavelet Packet Signatures,’ IEEE Transactions on Pattern Recognition and Machine Intelligence, 15 (1993).

    Google Scholar 

  16. Lee, S. and Hsu, F., ‘2D C-String: A New Spatial Knowledge Representation for Image Database System,’ Pattern Recognition, Volume 23, Number 10 (October 1990), pp. 1077–1087.

    Article  Google Scholar 

  17. Lu, G., ‘An Approach to Image Retrieval Based on Shape,’ Journal of Information Science, Volume 23, Number 2 (1997), pp. 119–127.

    Article  Google Scholar 

  18. Mechkour, M., ‘EMIR 2. An Extended Model for Image Representation and Retrieval,’ in Revell, N. and Tjoa, A. (Eds.), Database and Expert Systems Applications,Berlin, (Springer-Verlag, 1995), pp. 395–414.

    Google Scholar 

  19. Mehtre, B., Kankanhalli, M., and Lee, W., ‘Shape Measures for Content Based Image Retrieval: A Comparison,’ Information Processing & Management, Volume 33, Number 3 (June 1997), pp. 319–337.

    Article  Google Scholar 

  20. Mokhtarian, F., Abbasi, S., and Kitter, J., ‘Efficient and Robust Retrieval by Shape Content through Curvature Scale Space,’ Proceedings of the International Workshop on Image Database and Multimedia Search, Amsterdam, The Netherlands, (August 1996), pp. 35–42.

    Google Scholar 

  21. Niblack, W., Barder, R., Equitz, W., Flickner, M., Glasman, E., Petkovic, D., Yanker, P., Faloutsos, C., and Yaubin, G., ‘The QBIC Project: Querying Images by Content Using Color, Texture, and Shape,’ Proceedings of SPIE Storage and Retrieval for Image and Video Databases, Volume 1908, (January 1993), pp. 173–181.

    Google Scholar 

  22. O’Rourke, J., Computational Geometry in C, Cambridge University Press Cambridge, England, 1994.

    MATH  Google Scholar 

  23. Pass, G. and Zabih, R., ‘Histogram Refinement for Content-Based Image Retrieval,’ IEEE Workshop on Applications of Computer Vision, (1996), pp. 96–102.

    Google Scholar 

  24. Sethi, I., Coman, I., Day, B., Jiang, F., Li, D., Segovia-Juarez, J., Wei, G., and You, B., ‘Color-WISE: A System for Image Similarity Retrieval Using Color,’ Proceedings of SPIE Storage and Retrieval for Image and Video Databases, Volume 3312, (February 1998), pp. 140–149.

    Google Scholar 

  25. Stanchev, P., ‘General Image Database Model,’ Visual Information and Information Systems, Proceedings of the Third Conference on Visual Information Systems, Huijsmans, D. Smeulders A., (Eds.) Lecture Notes in Computer Science, Volume 1614 (1999), pp. 29–36.

    Google Scholar 

  26. Stanchev, P., ‘General Image Retrieval Model,’ Proceedings of the 27 th Spring Conference of the Union of the Bulgarian Mathematicians, Pleven, Bulgaria, 1998, pp. 63–71.

    Google Scholar 

  27. Stanchev, P., and Rabitti, F., GRIM_DBMS: a GRaphical IMage DataBase Management System,’ in T. Kunii (Ed.), Visual Database Systems, (North-Holland, 1989), pp. 415–430.

    Google Scholar 

  28. Stanchev, P., Smeulders, A., and Groen, F., ‘An Approach to Image Indexing of Document,’ in E. Knuth and L. Wegner (Eds.), Visual Database Systems II, (North Holland, 1992), pp. 63–77.

    Google Scholar 

  29. Tamura, H., Mori, S., and Yamawaki,, T., ‘Textural Features Corresponding to Visual Perception,’ IEEE Transaction on Systems, Man, and Cybernetics, SMC-8 (1978), pp. 460–472.

    Google Scholar 

  30. Tao Y. and Grosky, W., ‘Image Indexing and Retrieval Using Object-Based Point Feature Maps,’ Journal of Visual Languages and Computing, To Appear

    Google Scholar 

  31. Tao Y. and Grosky, W., ‘Shape Anglograms for Image Object Representation: A Computational Geometry’. Submit.

    Google Scholar 

  32. Tao Y. and Grosky, W., ‘Spatial Color Indexing using Rotation, Translation, and Scale Invariant Anglograms,’ Multimedia Tools and Applications, To Appear.

    Google Scholar 

  33. Unser, TM., ‘Sum and Difference Histograms for Texture Classification,’ IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (1986), pp. 118–125.

    Google Scholar 

  34. Wagner T., ‘Texture Analysis,’ in Jahne, B., Haussecker, H., and Geisser P., (Eds.), Handbook of Computer Vision and Application, Academic Press San Diego, (1999), pp. 275–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grosky, W.I., Stanchev, P.L. (2000). An Image Data Model. In: Laurini, R. (eds) Advances in Visual Information Systems. VISUAL 2000. Lecture Notes in Computer Science, vol 1929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40053-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-40053-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41177-2

  • Online ISBN: 978-3-540-40053-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics