Skip to main content

Bandwidth of Split and Circular Permutation Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1928))

Included in the following conference series:

Abstract

The BANDWIDTH minimization problem on graphs of some special graph classes is studied and the following results are obtained. The problem remains NP-complete when restricted to splitgraphs. There is a linear time algorithm to compute the exact bandwidth of a subclass of splitgraphs called hedgehogs. There is an efficient algorithm to approximate the bandwidth of circular permutation graphs within a factor of four.

This work was supported by Netherlands Organization for Scientific Research (NWO).

Supported by Ecole Normale Supérieure de Lyon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assmann, S. F., G. W. Peck, M. M. Sys lo and J. Zak, The bandwidth of caterpillars with hairs of length 1 and 2, SIAM J. Algebraic Discrete Methods 2 (1981), pp. 387–393.

    Article  MATH  MathSciNet  Google Scholar 

  2. Blum, A., G. Konjevod, R. Ravi and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (Dallas, TX, 1998), pp. 111–105.

    Google Scholar 

  3. Chinn, P. Z., J. Chvátalová, A. K. Dewdney and N. E. Gibbs, The bandwidthproblem for graphs and matrices-a survey, Journal of Graph Theory 6(1982), pp. 223–254.

    Article  MATH  MathSciNet  Google Scholar 

  4. Chung, F. R. K., Labelings of graphs, Selected topics in graph theory 3 (1988), pp. 151–168.

    Google Scholar 

  5. Downey, R. G. and M. R. Fellows, Parameterized complexity, Springer-Verlag New York, 1998.

    MATH  Google Scholar 

  6. Feige, U., Approximating the bandwidth via volume respecting embeddings, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing(Dallas, TX, 1998).

    Google Scholar 

  7. Garey, M. R., R. L. Graham, D. S. Johnson and D. E. Knuth, Complexity results for bandwidth minimization, SIAM Journal on Applied Mathematics 34 (1978), pp. 477–495.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gurari, E. M. and I. H. Sudborough, Improved dynamic programming algorithms for bandwidth minimization and the MinCut linear arrangement problem, J. Algorithms 5 (1984), pp. 531–546.

    Google Scholar 

  9. Haralambides, J. and F. Makedon, Approximation algorithms for the bandwidth minimization problem for a large class of trees, Theory Comput. Syst. 30 (1997), pp. 67–90.

    MATH  MathSciNet  Google Scholar 

  10. Haralambides, J., F. Makedon and F. and B. Monien, Bandwidth minimization: An approximation algorithm for caterpillars, Math. Syst. Theory 24 (1991), pp. 169–177.

    Article  MATH  MathSciNet  Google Scholar 

  11. Kleitman, D. J. and R.V. Vohra, Computing the bandwidth of interval graphs, SIAM Journal on Discrete Mathematics 3 (1990), pp. 373–375.

    Article  MATH  MathSciNet  Google Scholar 

  12. Kratsch, D., P. Damaschke and A. Lubiw, Dominating cliques in chordal graphs, Discrete Mathematics 128 (1994), pp. 269–276.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kloks, T., D. Kratsch and H. Müller, Approximating the bandwidth for asteroidal triple-free graphs, Journal of Algorithms 32 (1999), pp. 41–57.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kloks, T., D. Kratsch, and H. Müller, Bandwidth of chain graphs, Information Processing Letters 68 (1998), pp. 313–315.

    Article  MathSciNet  Google Scholar 

  15. Kratsch, D. and L. Stewart, Approximating bandwidth by mixing layouts of interval graphs, Proceedings of STACS’99, LNCS 1563, pp. 248–258.

    Google Scholar 

  16. Monien, B., The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete, SIAM Journal on Algebraic and Discrete Methods 7 (1986), pp. 505–512.

    Article  MATH  MathSciNet  Google Scholar 

  17. Rotem, D. and J. Urrutia, Circular permutation graphs, Networks 12 (1982), pp. 429–437.

    Article  MATH  MathSciNet  Google Scholar 

  18. Papadimitriou, C. H., The NP-completeness of the bandwidth minimization problem, Computing 16 (1976), pp. 263–270.

    Article  MATH  MathSciNet  Google Scholar 

  19. Parra, A., structural and algorithmic aspects of chordal graph embeddings, PhD-thesis, Technische Universität Berlin, 1996.

    Google Scholar 

  20. Peck, G. W. and Aditya Shastri, Bandwidth of theta graphs with short paths, Discrete Mathematics 103 (1992), pp. 177–187.

    Article  MATH  MathSciNet  Google Scholar 

  21. Sprague, A. P., An O(n log n) algorithm for bandwidth of interval graphs, SIAM Journal on Discrete Mathematics 7 (1994), pp. 213–220.

    Article  MATH  MathSciNet  Google Scholar 

  22. Unger, W., The complexity of the approximation of the bandwidth problem, Proceedings of the 39th Annual Symposium on Foundations of Computer Science (Palo Alto, California, 1998), pp. 82–91.

    Google Scholar 

  23. Venkatesan, G., U. Rotics, M. S. Madanlal, J. A. Makowsky, and C. Pandu Rangan, Restrictions of minimum spanner problems, Information and Computation 136 (1997), pp. 143–164.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kloks, T., Kratsch, D., Le Borgne, Y., Müller, H. (2000). Bandwidth of Split and Circular Permutation Graphs. In: Brandes, U., Wagner, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2000. Lecture Notes in Computer Science, vol 1928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40064-8_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-40064-8_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41183-3

  • Online ISBN: 978-3-540-40064-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics